

<u>PVD 75</u>

THIN FILM DEPOSITION SYSTEM OPERATION MANUAL

Data and information herein are subject to change without notice. Contact the Kurt J Lesker Company for the latest version of this manual.

This manual contains drawings and technical instructions that are proprietary by the Kurt J. Lesker Company. These items are not to be reproduced, published or distributed to a third party without written consent from the Kurt J. Lesker Company.

The Kurt J. Lesker Company assumes no liability for damages to customer facilities or personnel resulting from misuse or misapplication of the unit.

[©]Kurt J. Lesker Company ~ Version 8.0 ~ ~ November 2012 ~

CORPORATE HEADQUARTERS	EUROPEAN HEADQUARTERS	ASIAN HEADQUARTERS
Kurt J. Lesker Company Kurt J. Lesker Company, Ltd.		Kurt J. Lesker Shanghai Trading Co.
1925 Route 51	15-16 Burgess Road	Building 63, Lane 1000
Jefferson Hills, PA 15025 Hastings, East Sussex		Zhangheng Road
USA	TN35 4NR, England	Pudong New Area, Shanghai
Phone: 800-245-1656	Phone: +44 1424-458100	201203 P.R. China
Fax: 412-384-2745	Fax: +44 1424-458103	Phone: 01186-21-50115900
		Fax: 01186-21-50115863
CONTACT US		
California, USA 925-449-0104 Canada 800-456-2476		
Hungary +36 1383-5322 Germany 08000-012-843		

Warranty	1
Trademarks	3
Service Information	5
Overview	7
General Specifications	8
Utility Requirements	9
Safety Symbols	10
Safety	11
Operator Responsibilities	11
Safety Guidelines	12
Site Preparation	. 15
Receipt Inspection	16
Uncrating	17
Installation Considerations	19
Environmental Conditions	19
Grounding System	21
Electrical Ground	21
Earth Ground	21
Earth Ground Installation	22
Grounding Maintenance	22
Utility Connections	22
Electrical	23
Standard Electrical Connectors	23
System Power Connections	24
Optional Equipment Power Connections	24
Communication	24
Cooling Water	24
KJLC Chiller Components	27
Compressed Air (pneumatics)	27
Pneumatic Controls	27
Nitrogen Gas	29
Process Gas	30
Exhaust Connections	31
Start-Up	33
Operation Overview	. 35
Manual Operation	35
Pumpdown Procedures	36
Cryopump with Load Lock Chamber	36
Cryopump without Load Lock Chamber	37
Turbo Pump with Load Lock Chamber	38
Turbo Pump without Load Lock Chamber	39

Vent Procedures	. 39
Turbo Pump Vent	. 39
Load Lock Vent	. 40
Turbo without Load Lock Vent	. 40
Turbo and Cryo Pump with Load Lock, Cryo Pump without Load Lock Vent	. 40
Process Chamber Vent	. 41
Load Lock Chamber Vent	. 41
Cryopump Regeneration Procedure	. 42
Pneumatic Valve Panel Operation	. 43
Sample Transfer Procedures	. 43
Sample Loading	. 43
Sample Unloading	. 44
Z-Shift Setup and Operation	. 45
Sample Heating Setup and Operation	. 46
Substrate Shutter Setup and Operation	. 46
Manual Substrate Shutter Procedure	. 46
Manual Pneumatic Shutter Procedure	. 46
Sample Bias Setup and Operation	. 47
Gas Flow Setup and Operation	. 48
Manual Pressure Control (Needle Valve)	48
Auto Pressure Control (247/250)	49
Auto Pressure Control (247) 250 million and a sub-	50
Souther Source Solute and Operation	Г1.
Safety	
Salety	. 51 52
System Equipment Pequirements	. 52 52
Manual Operation through Oware	. 52 57
	. 54 EA
2 Desition High Vacuum Value System	. 54 EA
S-POSICION FIGH Vacuum Valve System No High Vacuum Valve	. 54
PE Sputtoring	. 55 E0
Torgot Changing	. 59
Cleaning and Maintenance	. 03
	. 05
E-Beam Source Setup and Operation	65
Safety	. 66
Setup	.6/
Shutter Speed Adjustment	.6/
Shutter Limit Adjustment	. 68
System Equipment Requirements	. 68
Water Flow Sensors	. 69
Vacuum Monitor	. 71
External Cover Switches	. 71
Operation	. 73
KI-6 Example	. 74
265 Model Example	. 79
Abort if Timeout and GoTo Setup	. 83

Material Replenishing	85
Cleaning and Maintenance	85
Glossary	85
LTE/HTE Furnace Operation	86
Thermal Source Setup and Operation	87
Safety	87
Setup	87
Shutter Speed Adjustment	87
Shutter Limit Adjustment	88
System Equipment Requirements	88
Water Flow Sensors	89
Pressure Requirements	
Operation	
Manual Operation	
Recipe Controlled Operation	
Abort if Timeout and GoTo Setup	
Material Replenishing	
Cleaning and Maintenance	
Kaufman & Robinson Ion Beam Source Operation	100
Constant Current Mode	101
Constant Voltage Mode	103
Manual Gas Mode	105
GUI (Remote Mode)	105
Operation	105
Shutdown	106
Film Thickness Monitor/Controller	106
Emergency-Off Recovery	106
Systems with Separate Control Rack & Frame	108
System with Integrated Control Rack & Frame	109
Recovery from Accidental Pressing of EMO	110
System Shutdown	111
Shut Down	113
Software Operation	115
CWare Overview	115
General Guidelines	116
Terminology and Definitions	117
Security	119
Adding a New User	120
Deleting a User	120
Modifying a User's Access	120
Resetting a Password	121
Software File Structure & Maintenance	121
Backing Up System Data	121
Restoring System Data	121

Software Upgrades	122
Common Icons	
Operation	
Vacuum Screen	126
Deposition Screen	129
Gas Screen	131
Gas Control Overview	134
Master/Slave Operation	134
Pressure Control	134
Motion Screen	135
Substrate X/Source Y Example	
Cooling Screen	
Heating Screen	
MKS979 Gauge	
Sigma Screen	
System	
Discrete Screen	146
Analog Screen	
Strings Screen	150
Ethernet I/O Screen	152
Recipe Database	
Reorder Items	155
Recorded Data	156
Action Log	157
Interlocks	159
Sigma Data Sets	
System Users	
CWare Startup	
Standard Recipes	
Running Recipes	
Writing Recipes	
Modifying Recipes	
Importing Recipes	
Recording Data	172
Data Logging Signals	173
viaintenance	
Personnel Qualifications	
General Recommendations	
Maintenance Materials and Accessories	
Component Preventative Maintenance	
Component Repair/Replacement	181
Process Chamber Cleaning	

Preventative Maintenance Schedule	
Software Maintenance	
Maintenance upon Venting	
Daily Maintenance	
7-Dav Maintenance	
30-Day Maintenance	198
90-Day Maintenance	100
Voorly Maintenance	200
Spare Parts List	
Appendix	
Vacuum Technology	211
What is Vacuum?	
Large Hadron Colliders	
Mirrors	
Cameras	
Halloween Masks	
Neon Signs	
Pressure	
Wildt is Pressurer	
Nano Scale	
Pressure Unit	
Basic Vacuum Concepts	214
Number Density	
Mean Free Path	
Particle Flux	
Reducing Pressure	215
Base Pressure	215
Working Pressure	215
Ultimate Pressure	
Flow Regimes	
Vacuum Doesn't Suck!	
Conductance	
Practical Interpretation	
Conductance Units	
Calculating Conductances	
Inidiual Calculation	
Computer Calculations	
Dumning	220 221
Fumping Interpretation	221 221
Pumping Speed Units	
· ····································	

Pumping Speed Curves	222
Displacement and Capacity	222
Effective Pumping Speed (EPS)	223
What is EPS?	223
Calculating EPS	223
Gas Load	224
What is Gas Load?	224
Gas Load Units	224
Outgassing	225
What is Outgassing?	225
Outgassing Rate Units	225
Outgassing Sources	225
Reducing Outgassing	225
Throughput	226
What is Throughput?	226
Throughput Units	226
Measuring Throughput	226
Gas Load & Throughput	227
Comparison & Calculations	227
Pump-Down Times	228
Manual Calculations	228
Computer Calculations	228
Slow Pumpdown	228
Unit Conversion Tables	231
Material Deposition	234
Periodic Table of the Elements	242
Drawing Package	

WARRANTY

EQUIPMENT WARRANTY AND REMEDY: COMPANY warrants that the Equipment fabricated and furnished by COMPANY hereunder shall be free from material defects in workmanship and materials. If any of the Equipment fabricated and furnished by COMPANY materially fails to conform to the warranty set forth in the preceding sentence, CUSTOMER's remedy shall be limited, at COMPANY's option, to either (i) repair or replacement of the nonconforming Equipment, F.O.B. point of repair or replacement, with shipping charges prepaid by CUSTOMER; or (ii) repayment of the portion of the contract price paid by CUSTOMER attributable to such non-conforming Equipment. Dismantling and reinstalling work is excluded from this Equipment Warranty and Remedy.

SERVICES WARRANTY AND REMEDY: COMPANY warrants that any engineering, design or software development and programming services furnished under COMPANY's proposal or quotation will conform to standards of practice generally accepted in the profession and/or industry for services of a similar nature. If the services provided by COMPANY materially fail to conform to the warranty set forth in the preceding sentence, CUSTOMER's remedy shall be limited to revision, replacement or reperformance, at COMPANY's expense, of those services which COMPANY reasonably determines fails to so conform.

SOFTWARE WARRANTY AND REMEDY: COMPANY warrants that any Equipment furnished hereunder which is comprised of software, when used with COMPANY-specified hardware, shall conform to the specifications set forth in COMPANY's proposal or quotation or, in the case of standard software, with published specifications prepared, approved and issued by COMPANY's headquarters in Clairton, Pennsylvania. If any software furnished by COMPANY hereunder materially fails to conform to the warranty set forth in section 3, CUSTOMER's remedy shall be limited to correction of the non-conformance by COMPANY, without charge to CUSTOMER. COMPANY makes no representation or warranty, express or implied, that the operation of the software will be uninterrupted or error free, or that the functions contained therein will meet or satisfy CUSTOMER's intended use or requirements.

WARRANTY PERIOD: The warranties set forth in sections 1 and 3 above shall be effective for a period of twelve (12) months from the date of shipment of the Equipment from COMPANY's plant. The warranty set forth in section 2 above shall be effective for a period ending twelve (12) months from the date of performance of the services.

WARRANTY CONDITIONS AND LIMITATIONS: CUSTOMER's right to enforce the foregoing warranties is expressly conditioned upon CUSTOMER notifying COMPANY in writing during the Warranty Period of any alleged non-conformity or defect, stating specifically the nature of the alleged non-conformity or defect. COMPANY shall have the right, upon such notification, to review, inspect and/or examine the Equipment indicated by CUSTOMER, and CUSTOMER shall make the Equipment available to COMPANY for such purposes.

The foregoing warranties shall not apply if COMPANY's review, inspection or examination discloses that the Equipment (i) has not been installed, maintained or operated in accordance with COMPANY's instructions; (ii) has been used by CUSTOMER in a manner or for applications not recommended by COMPANY; (iii) has been repaired, altered or modified by CUSTOMER; (iv) has been subjected to other than normal use, storage, handling, installation, operation or maintenance; or (v) has been damaged by fire, act of God, any cause covered by CUSTOMER's insurance or any other event or occurrence not caused by COMPANY.

The foregoing warranties shall not apply to Equipment, or parts or components thereof, which are not manufactured or processed by COMPANY, or which are purchased by COMPANY from another party or partied. The manufacturer's warranty for such Equipment, parts or components, if any, shall be assigned to CUSTOMER without recourse to COMPANY.

The foregoing warranties shall not apply to designs, materials or specifications furnished or specified by CUSTOMER and incorporated into the Equipment.

THE EXPRESS WARRANTIES AND REMEDIES SET FORTH IN THIS SECTION ARE EXCLUSIVE AND ARE CONDITIONED UPON TIMELY NOTIFICATION BY CUSTOMER. THEY ARE GIVEN BY COMPANY AND ACCEPTED BY CUSTOMER IN LIEU OF ANY AND ALL OTHER REMEDIES, WARRANTIES, AND GUARANTEES, EXTOUCHED OR IMPLIED, AND IN LIEU OF ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF WHICH ARE HEREBY SPECIFICALLY EXCLUDED AND DISCLAIMED.

COMPANY neither assumes, nor authorizes any representative or other person to assume for it, any obligation or liability other than such as is expressly set forth in this section. Any change, modification, extension or addition to the foregoing warranties, remedies or limitations shall not be binding upon COMPANY unless in writing and duly executed by an authorized officer of COMPANY.

TRADEMARKS

Every attempt has been made to identify the owner of product trademarks and registered trademarks that appear in this manual. Changes of company ownership affecting the named trademark holder may not be identified.

ATX	Advanced Energy
Baratron	MKS Instruments, Inc.
Conflat	Varian Vacuum Products
Convectron	Granville Phillips
Cryo-Torr	CTI-CRYOGENICS – Helix Technology Corp.
XTC/XTM	Leybold Inficon
Delrin	E.I. DuPont de Nemours & Co., Inc.
EcoDry	Leybold Vacuum Products Inc.
Fomblin	Ausimont
Inconel	Inco Alloys International Inc.
KF	Leybold Vacuum Products Inc.
Lexan	General Electric Co.
Magidrive	UHV Designs Ltd.
MagiGear	UHV Designs Ltd.
MDX	Advanced Energy
Micromaze	Kurt J. Lesker Co.
OFHC	American Metals Climax Inc.
On-Board	CTI-CRYOGENICS – Helix Technology Corp.
PBR260	Pfeiffer
Pinnacle	Advanced Energy
Pyrex	Corning Glass Works
Radak	Luxel Corp.
RFX	Advanced Energy
SID-242	Sigma Instruments
SmartMotor	Animatics Corporation
Teflon	E.I. DuPont de Nemours & Co., Inc.
TMH261	Pfeiffer
TORUS®	Kurt J. Lesker Co.
VCO	Cajon Co.
VCR	Cajon Co.
Viton	E.I. DuPont de Nemours & Co., Inc.

SERVICE INFORMATION

Prior to contacting KJLC Systems Support for assistance, utilize the Troubleshooting procedures provided in the individual system component manuals and this Operator's Manual.

For Service and support within and after the warranty period, contact KJLC System Support:

North America Phone: 800-245-1656, ext. 7311 or 7557 Fax: 412-384-2745 E-mail: systemscustomerservice@lesker.com

Europe Phone: +44 1424-458100 Fax: +44 1424-458103 E-mail: systemcustomerserviceeu@lesker.com

Asia Phone: 01186-21-50115900 Fax: 01186-21-50115863 Email: systemscustomerservicecn@lesker.com

For all other regions, contact North America customer service.

OVERVIEW

The PVD 75 System is a versatile, value-engineered vacuum system which can be configured to suit a variety of thin film deposition applications. Standard features include a front-loading box chamber, turbomolecular pump package and an integrated touch-screen control.

Source flange options include magnetron sputtering, electron beam evaporation, thermal evaporation and low temperature evaporation furnaces. To ensure product reliability, the system is built using proven process modules from other standard Kurt J. Lesker Company thin film deposition systems.

KJLC reserves the right to make changes at any time without notice.

Any duplication of this manual, in whole or in part, without express written approval from Kurt J. Lesker Company is strictly prohibited.

GENERAL SPECIFICATIONS

System Footprint (nominal)	47" (1194mm) wide x 35" (889mm) deep x 75" (1905mm) high
Cabinet Construction	Carbon Steel, Fully Enclosed, Gray Powder Coat Finish
Chamber - Volume (nominal) - Configuration - Construction	75 liters 4" (356mm) wide x 14" (356mm) deep x 24" (610mm) high D-Shaped, 304L Stainless Steel with O-ring Sealed Hinged Aluminum Front Door
Substrate Fixturing - Platen Size - Rotation (optional) - Cooling (optional) - Heating (optional) - Heating Temperature Range (optional)	Base on selected options Up to 12" (305mm) diameter Variable up to 20 RPM Water or LN ₂ (LN ₂ static only) Quartz Lamp or Resistive Element 150° - 600°C
Deposition Capability (optional)	Sputtering Up/Down or Evaporation Up
Process Gas (optional)	2 Channels, Needle Valves or Mass Flow Control
System Control - Standard - Optional	PC-Based HMI with CWare Software Recipe Control and Datalogging
Warranty	12 months after shipment
Certifications (optional)	CE marking, CSA, NRTL
Shipping Weight (estimated – exclusive of packing material)	1,800 lbs (816kg)

UTILITY REQUIREMENTS

- 1) System Power Configurations
 - a) North America/Europe/Asia 208-220VAC, 1 phase, 50/60Hz, 3 wire, 30 amps
 - b) North America (Optional) 208/220VAC, 3 phase, 60Hz, 5 wire, 60 amps
 - c) Electron Beam Gun (2nd Power Drop, if applicable) 208/220VAC, 1 phase, 60Hz, 4 wire, 40 amps
 - d) Europe/Asia (Optional) 380/400VAC, 3 phase, 50Hz, 5 wire, 30 amps
 - e) Electron Beam Gun (2nd Power Drop, if app) 380/400VAC, 3 phase, 50Hz, 5 wire, 30 amps
- 2) System Utilities
 - a) Main System Water (typ) 2.0-6.0 gpm (7.6-22.8 l/min), 7-9 pH, 50μm particle filtration, 1" FNPT
 - b) Cryogenic Compressor Water 0.5 gpm (1.9 l/min), 6-8 pH, 50μm particle filtration, ½" FNPT
 - c) Compressed Air 80 psi (552 kPa), ¼" tube connection
 - d) Chamber Vent 10 psi (69 kPa), ¼" tube connection
 - e) Cryo Purge 40 psi (276 kPa), ¼" tube connection
 - f) Process Gas 5-7 psi (35-48 kPa), ¼" VCR connection
- Communications: Analog Modem Port and/or 10/100 Ethernet Port (optional)– RJ type connector

SAFETY SYMBOLS

The following safety symbols will be used throughout this manual:

DANGER

This notation indicates an imminently or potentially hazardous situation that may cause serious injury or death if not avoided. This notation is only used for extreme situations.

ACAUTION

This notation indicates a potentially hazardous situation that may result in injury if not avoided. It is also used to alert against unsafe practices that may result in damage to the equipment.

00 This notation is used to highlight any technical requirements, operations, procedures, or conditions that should be emphasized.

SAFETY

Safe use of the system requires familiarity with the individual system components and adherence to the safety precautions presented in this section. Each operator must have appropriate training and all supplemental component manuals should be reviewed prior to the use of the equipment.

OPERATOR RESPONSIBILITIES

Safe operation is the responsibility of the system user:

- 1) The operator must adhere to all safety notes, cautions, and dangers presented in this manual.
- 2) All system component manuals are included. The operator must adhere to all safety recommendations presented in each of these manuals.
- 3) Failure to comply with these and all precautions violates the safety standards of intended use of this system and may impair the protection provided by the system.
- 4) The Kurt J. Lesker Company assumes no liability for failure to comply with these requirements.
- 5) Please contact KJLC Systems Support prior to attempting any modifications. Only qualified personnel should perform component substitutions, modifications to, or service on the system.

KJLC assumes no responsibility for equipment additions or modifications without KJLC's written consent. In-house performance of component repair or replacement during the warranty period without direction or approval from KJLC Systems Support can result in termination of the warranty.

SAFETY GUIDELINES

1) High voltage and electrical energy hazards exist for the power distribution cabinet and all power supplies.

🛕 DANGER

High voltage and electrical energy hazards can cause serious injury or death through electrical shock. Avoid contact with power supplies and all power distribution hardware. All personnel involved with power supply service or maintenance must have appropriate electrical training. Service and maintenance personnel must read each component part manual before working on the equipment to determine the potential present on each circuit. Power must be disconnected and the equipment must be grounded before service or maintenance work is performed. Never work alone on live electrical circuits. You must be within sight or calling distance of another employee who has the proper qualifications.

Do not wear rings, wristwatches, or other jewelry on your person while working on live electrical circuits. Wear eye protection while working on live electrical circuitry where a flash might occur. DO NOT WEAR CONTACT LENSES.

RF power supply connection

2) High frequency hazards exist at the RF power supplies/connections.

A DANGER

High frequency fields may cause irregular performance of pacemakers, which can cause abnormal heartbeat or death. Persons with pacemakers should avoid exposure to all processes involving the high frequency hazards.

3) The permanent magnets create *magnetic field hazards*.

Magnetic fields may cause irregular performance of pacemakers, which can cause abnormal heartbeat or death. Persons with pacemakers should avoid exposure to all processes involving the magnetic field hazards.

A CAUTION

Strong magnetic fields can destroy watches or magnetic cards. Keep watches, magnetic cards, and other metal objects away from magnetic field hazards. Do not use magnetic tools when performing service or maintenance work on the system.

4) Chemical hazards exist when potentially harmful chemicals are introduced or emitted from the system.

A DANGER

Exhaust gas may be poisonous and may require special measures of elimination. Ensure adequate ventilation and appropriate exhaust regulation when working with potentially poisonous exhaust gases. Deposition sources may emit poisonous gases if not maintained properly. Read all safety data sheets and follow the documented maintenance procedures. Some cleaning fluids may leave a flammable or toxic residue. Observe all instructions provided with cleaning fluids.

5) Mechanical hazards exist because moving parts can cause personal injury or instrument damage.

🛕 DANGER

Before actuating the hoists or slit valves, all personnel must be clear of moving parts. Use extreme caution when working around moving parts.

6) Compressed gas used for processes can create high-pressure hazards throughout the gas plumbing lines and process chamber.

A DANGER

High pressure can cause personal injury and property damage. The compressor unit and associated hoses contain compressed helium and must not be mechanically or thermally stressed. Before accessing a cryogenic pump, read the operator's manual and follow all safety guidelines. Process gas tanks must be kept according to manufacturers' specifications and local codes.

7) Heating elements (quartz lamps, composite, etc.) used for sample heating can create *high temperature hazards* on chamber walls, viewport surfaces and chamber internals.

A DANGER High temperatures can cause harm to personnel and equipment. Do not vent chamber until temperature is low enough to facilitate safe handling of parts. High temperatures can also cause damage to materials if the system is vented prematurely.

SITE PREPARATION

The purpose of this section is to provide new tool owners with the information necessary to prepare their facility for their new tool and to ensure the tool start up can go as efficiently as possible. Typical required utilities will include electrical power, compressed air, Nitrogen, cooling water and applicable process gases to be used in the system. In addition, hazardous gas exhaust or other customer specific safety regulations may be required, which may not be covered in this manual.

Ut is the customer's responsibility to install this equipment in accordance with current local electrical and mechanical codes, in addition to any national regulations.

KJLC engineers are responsible for the start-up of the tool only. Equipment unpacking, locating and site preparation is the customer's responsibility. The customer is also required to prepare all required utilities and make those connections to the equipment. Failure to have this work completed will delay the scheduling of start-up and training (if purchased) by KJLC. Verification from the customer that all utilities are completed is required before KJLC will schedule the tool start-up or service.

If system start-up is purchased, connect all utilities but DO NOT turn power on. Water and gas may be turned on <u>to</u> the system to check for leaks but do not turn ON any gas or water valves <u>on</u> the system. If you did not purchase a start-up, after all utilities are installed and verified you may initiate startup of the system as required. A KJLC Service Representative can assist you in assuring the tool is ready for start-up.

KJLC requires a minimum of 2 weeks' notice for scheduling a start-up. Additionally, if a start-up was purchased as part of the contract, then any items removed for shipment will be re-installed by the KJLC engineer during that time. However, if the customer has the ability to re-install some items, this should be coordinated with KJLC and can make the start-up and training period more productive.

During the start-up period, the KJLC engineer may need full access to the tool outside of normal working hours, including evenings and weekends. Unattended overnight operation of the tool will also be required. All relevant permissions and security clearances must be in place to facilitate these requirements. During this period, the intended system operator(s) should be present at all times for training and to assist the KJLC engineer whenever necessary.

Upon completion of the start-up and training, a final acceptance document should be signed by the KJLC engineer and authorized customer representative.

The following are general facility requirements, utility requirements, connection details and typical parts required for site preparation. If you have any questions regarding these requirements, please contact the applicable Process Equipment Division (PED) Customer Service Department.

North America Phone: 800-245-1656, ext. 7311 or 7557 Fax: 412-384-2745 E-mail: systemscustomerservice@lesker.com

Europe Phone: +44 1424-458100 Fax: +44 1424-458103 E-mail: systemcustomerserviceeu@lesker.com

Asia Phone: 01186-21-50115900 Fax: 01186-21-50115863 Email: systemscustomerservicecn@lesker.com

For all other regions, contact North America customer service.

RECEIPT INSPECTION

Depending on the tool platform and configuration, the tool may be crated, mounted to a wooden base or protection wrapped only. In addition, peripheral components, shielding or any additional parts may be packaged separately. Smaller packages could be located inside frames or enclosures for safe shipping.

If the tool is not to be unpackaged immediately upon receipt, it must be stored in an enclosed, dry area meeting environmental requirements as listed in the following sections.

 $\overset{(e)}{=}$ Most of the instrument racks and enclosures have locks. The keys for these locks are typically attached to the tool computer (located in the control instrument mounting portion of the tool) in a small plastic package.

Visually inspect all crates and boxes for signs of shipping damage or mishandling. Any significant damage must be photographed and KJLC notified immediately.

DO NOT discard any packing materials until receipt inspection bas been completed. If any damage is found during uncrating, these materials may be needed to file shipping claims.

Inspect all tip and impact indicators attached to the system crate.

- 1) Prior to shipment, tip indicators are placed on the walls of each crate.
- 2) Prior to shipment, impact indicators are placed on or near each major component, (i.e. instrument rack, deposition chamber, etc.)
- 3) If any indicator has been set off, KJLC should be notified immediately.

Assure that the content of each crate and package match the supplied Packing List. (Refer to Packing List included with shipment). If any discrepancies occur between the received parts and the Packing List, KJLC should be notified immediately. KJLC will not take responsibility for any missing items after 3 days of shipment arrival.

When possible, chambers are shipped under vacuum to preserve their integrity and cleanliness. Care should be taken to ensure viewports or F/T's are not damaged, which could produce an unsafe condition.

UNCRATING

A CAUTION

The system crating contains screws and nails for construction. Caution should be exercised during uncrating to assure no injuries occur from sharp edges or splitting wood.

- 1) Carefully remove the crate lid and inspect the condition of internal tip and impact indicators.
- 2) If applicable, unscrew the internal braces from inside the crate that surround the instrument rack and system for support (see Figure 1.)
- 3) Carefully remove sidewalls of crate.
- 4) If applicable, unscrew the lower braces from the instrument rack.

Due to the weight of the system and mode of travel, crate contents may shift. Extreme caution should be exercised when removing all internal and external supports.

5) Remove the nuts from the pieces of stainless steel all-thread that hold the system to the crate (See Figure 2). Do NOT discard the pieces of all-thread. They may be part of the leveling foot assemblies for the system framework.

6) Use a fork-truck to separately lift the instrument rack and system off of the shipping base if applicable. Approach both pieces from the SIDE and lift from the lower frame members, unless otherwise instructed.

CAUTION Only a properly trained and licensed fork lift operator should remove the instrument rack and deposition system from the shipping base. Improper removal of the components can result in equipment damage. Be cautious of electrical cable, gas lines, etc. when placing forks under the system framework and the instrument rack. Also be aware of the length of the cables between the instrument rack and the system (if applicable).

7) Lift the system up far enough to allow the shipping base to be pulled out from underneath the system.

DO NOT put any part of your body under the lifted system or serious injuries could occur.

- Before placing the system on the ground, insert the all-thread (removed in Step 5) into the mounting pads on the underside of the system frame. Once the all-thread is fully inserted, install the leveling feet onto the all-thread.
- 9) Gently place the system on the ground. Any damage to the system or its components incurred during un-crating should be reported to KJLC immediately.

 ${\ensuremath{\textcircled{}}}^{{\ensuremath{\textcircled{}}}}$ Shipping bolts may be installed on the chamber door or chamber top plate. These bolts must be removed prior to opening the door.

INSTALLATION CONSIDERATIONS

When moving the tool to its new location, it is important to consider passageways, doorways and floor loadings to allow easy and safe handling of the equipment.

The height and width of the system varies, depending on the platform and configuration purchased. Therefore, the tool General Assembly schematic should be referenced for approximate dimensions. It is highly recommended that the path intended to be used when moving the equipment from the uncrating area to the final location is checked for height and width limitations; specifically dimensions of, doors, elevators and corners.

The General Assembly schematics only show major components and may not indicate items such as cables, plumbing, connectors or brackets that may extend outside of the referenced dimensions. Therefore, contact KJLC if the tool location has severe space constraints to ensure there will not be any interference.

The weight of the system varies, depending on the platform and configuration purchased. Standard platforms typically range between 1500 to 4500 lbs (680 to 2100 Kg). Custom and cluster tools may weigh more. If there are weight limitations within the travel path or final location of the tool, KJLC should be contacted for more detailed weight information.

ENVIRONMENTAL CONDITIONS

Facility and local safety codes may also have more stringent requirements that must be met for equipment placement. It is the responsibility of the customer to ensure these requirements are met.

The location of the tool should be given careful consideration. The tool is designed for indoor use only and is not protected against harmful ingress of moisture. It is designed to operate in a laboratory environment that contains minimal shock and vibration. The following are recommended conditions and are applicable to all KJLC platforms.

There should be adequate space around the tool to easily gain access to all required components for routine services and preventative maintenance. It is recommended that the minimum distances listed below be maintained.

AREA	DISTANCE
FRONT	36 INCHES (0.9 M)
SIDES	24 INCHES (0.6 M)
REAR	24 INCHES (0.6 M)

Custom systems may require increased distances and should be considered when installing the tool. The General Assembly schematic should be referenced.

There should also be adequate air flow around the equipment. It is recommended that the ambient temperature be maintained as below.

RANGE	TEMPERATURE
MINIMUM	60°F (16°C)
MAXIMUM	85°F (30°C)

Relative humidity should be less than 65% non-condensing. The combination of the ambient temperature, relative humidity and inlet water temperature must not result in any condensation on any of the water cooled components.

Additionally, large temperature changes can affect the pressure readings when operating at UHV pressures. This is due to o-ring permeation and material temperatures (out gassing).

may occur. In addition, a safety hazard could be created.

KJLC equipment racks may include cooling fans and ventilation holes at the top and/or rear. Please allow adequate spacing for air flow. Also refer to all system component Operation Manuals for additional ventilation requirements as detailed by the manufacturer.

Care must also be taken to ensure the tool is not placed in a location that can be exposed to corrosive, harmful materials or excessive vibration sources such as nearby cranes, elevators, folding doors and heavy machinery.

If the mechanical pump is not integrated into the system framework, keep the distance between the pump and system to a minimum. A longer roughing line will reduce the effective pumping speed and increase pump down time.

GROUNDING SYSTEM

A correct grounding system is necessary to ensure safe and proper operation of the deposition system. KJLC systems have been tested and are built to EMC (Electro Magnetic Compatibility) standards using the highest level of grounding determined for a system. An electrical and earth ground are required.

ELECTRICAL GROUND

A standard electrical ground that runs with the power cable to the main power disconnect power plug. This ground can be incorporated into the same SO cable supplying power to the system and must meet minimum requirement specifications as outlined by applicable state and local electrical codes.

EARTH GROUND

BEST (RECOMMENDED)

The grounding system is comprised of dedicated grounding electrode(s) providing 3 ohms resistance or less (see earth ground installation below) and connection from it to the deposition system using copper strap (see below for description) or copper tube with equivalent surface area. This level is a requirement for RF or E-beam systems.

GOOD

The grounding system is comprised of dedicated grounding electrode(s) providing 25 ohms resistance or less (see earth ground installation below) and connection from it to the deposition system using copper strap (see below for description) or copper tube with equivalent surface area. A solid conductor wire can also be used as listed in the table below.

ALTERNATIVE

For equipment installed in multistory buildings, other types of grounding electrodes permitted by applicable regulatory codes can be used (i.e., building structural steel or designated electrical ground points) provided the resistance specification is still met.

Braided wire has high impedance to radio frequency. Do not use braided wire for grounding connection. Use the copper conductors indicated below:

DISTANCE	CONDUCTOR
0 - 20 feet (0 - 6 meters)	#4 AWG (5.19 mm) wire
20 - 60 feet (6 - 28 meters)	Copper strap (as described below)
over 60 feet (over 28 meters)	Consult KJLC personnel

Recommended copper strap for Earth Ground:

KJLC PART NUMBER	DESCRIPTION
RSHUC01324	0.032 X 2.5 INCH (1 MM X 6.5 CM) COPPER STRAP, 8 FT (2.5 METERS)

EARTH GROUND INSTALLATION

If possible, dedicated grounding electrode(s) should be installed. The electrodes should be ³/₄ inch (2 cm) diameter copper rod or pipe, driven 8 ft (2.5 meters) into the ground, no less than 6 ft (2 meters) apart, located as close to system as possible. Bonding jumpers between the electrodes should be copper strap (as listed above). Measure the resistance between the two ground rods using an accurate resistance bridge. Add salt water or copper sulfate to the earth to lower the resistance to one ohm. See Figure 3 for illustration of grounding electrodes. Grounding connection to the deposition system should follow KJLC wiring diagrams and should only be made at the intended point provided at the vacuum chamber or frame (using stainless hardware to make connection). Refer to the system General Assembly drawing for location.

FIGURE 3 EARTH GROUND REQUIREMENTS

Failure to connect the system to a sufficient earth ground could cause severe damage to system components and/or auxiliary electronic control equipment and will void the warranty.

GROUNDING MAINTENANCE

Resistivity should be verified using a calibrated ground resistance tester following accepted measuring methods. The grounding electrode should be checked at least once per year to assure correct resistance and that all points of connection are tight.

UTILITY CONNECTIONS

Refer to the General Assembly Schematic and Utility Requirements Document for your specific tool requirements.

ELECTRICAL

A CAUTION Ensure facility pow

Ensure facility power feed is off and locked out prior to

Follow the applicable codes for proper wire size, power feed and grounding requirements.

The electrical requirements for your tool were calculated using the requirements of the installed components. Reference the applicable power distribution schematics for details.

Install a power cord (SO type) or use a hardwire setup (conduit with individual wires) from an appropriately sized and protected distribution panel to the power distribution unit. If separate drops are required, the General Assembly drawing should be referenced.

Verify that all instrumentation and all devices requiring line power are labeled/configured appropriately for the system line voltage (120 or 208, etc.).

It is recommended that a wall mounted power disconnect switch be mounted near the system and used as the main connection point for the incoming system power.

Depending on the configuration of your system, components such as pumps, compressor and instrument racks may be located separately from the main system. This may require interconnect cables to be run between the main system and remote item. Depending on your local, regional or national safety regulations, you may be required to provide additional protection for those interconnects, such as conduit or cable trays.

Check with your facilities manager for code specific regulations on power installation, service disconnects and interconnecting installations.

STANDARD ELECTRICAL CONNECTORS

Each KJLC Vacuum System comes with a power connection receptacle built into the system electrical rack. The mating power plug connector is shipped with the system. Below are the standard configurations for mating power plug. Power designations for each plug are listed above in the Electrical Power Connections Chart. Check with your facilities manager for code specific regulations on power installation and service disconnects and power connection wiring.

Standard System Power Configurations:

- Worldwide 200-240 VAC, 1 phase, 50/60Hz, 30 amps
- North America 208 VAC (+/- 10% line to line and line to neutral), 3 phase, 60Hz, 60 amps
- Europe/Asia 380-415 VAC, 3 phase, 50Hz, 30 amps

Voltage variations outside this range may cause system alarms or erratic operation.

SYSTEM POWER CONNECTIONS

Device	Freq. (Hz)	Phase	Voltage (AC)	Current (A)	System Insert / Housing (Harting)	SUPPLIED MATING COMPONENTS (HARTING)	CUSTOMER SUPPLIED (FLYING LEADS)
Power Distribution	60	1	200-240	30	09310062601/	./ 09310062701/ 09300160521/ 1 09000005095	3-wire
Power Distribution	50	3	380-415	30	09300160301		5-wire
Power Distribution	50/60	3	208 +/- 10%	60	09380062611/ 09300160301	09380062711/ 09300160521/ 09000005097	5-wire

OPTIONAL EQUIPMENT POWER CONNECTIONS

Depending on the optional equipment purchased, some components may require a separate power drop. These items could include cryo-pump compressors, water chillers and deposition power supplies. In these cases, the system power distribution schematic and specific component manual should be referenced for requirement details.

COMMUNICATION

Analog Modem Port and/or 10/100 Ethernet Port for computer controlled systems (RJ type connector) is available. This connection is required for tool remote support and service.

COOLING WATER

Cooling water is required that is capable of providing adequate cooling to system components as identified in the utility requirements document and tool schematics.

Supplied water should have the following characteristics.

- Minimum temperature of 5° above dew point, 77°F (25°C) max
- <u><</u> 50 μm particle filtration
- pH level between 6 8

Typical Requirements:

DEVICE	Range	MAXIMUM INLET PRESSURE	MAXIMUM PRESSURE DIFFERENTIAL	MINIMUM HOSE DIAMETER
SYSTEM	2-6 GPM 7.6 - 22.8 L/MIN	70 PSI	65 PSI	0.750 INCHES
CRYO COMPRESSOR	0.5 GPM 1.9 L/MIN	70 PSI	65 PSI	0.375 INCHES

NOTE: GPM = Gallons per minute, L/min = Liters per minute, PSI = Pounds per square inch.

PRESSURE DIFFERENTIAL - This is the pressure difference between the inlet water supply and the outlet water supply. If the pressure differential between the inlet and outlet is not high enough, reduced flow through the system will result. If a reduced flow is encountered, system operation may be affected due to inadequate cooling of components or loss of flow to system interlocks.

It is recommended that a main inlet and outlet water shut off valve be installed on systems that are connected to a house chiller system. If a cryo compressor is connected to the same small chiller as the KJLC system, it is required that a shut off valves are installed on the compressor inlet and outlet lines. If the system is being cooled by a larger house water system, these valves are not required.

Before installation, purge all newly constructed utility lines to remove all loose materials, such as thread compound, PTFE and tapes. Also be sure to remove any remaining burrs from the tube edges before connecting to the system.

1) Connect the supply cooling water to the BLUE water supply manifold (see photos below).

SHUT-OFF VALVES

WATER MANIFOLD CONNECTIONS SYSTEM COOLING WATER SUPPLY/RETURN

- 2) Connect the water return line to the WHITE return manifold.
- 3) Run cooling water to the cryo compressor (if applicable).

A CAUTION The system vacuum integrity should be verified prior to the flowing of cooling water. Introducing water prior to verifying vacuum integrity may cause system flooding or difficulty locating vacuum leaks in water lines. However, all customer supplied water connections (up to the system water manifolds) should be verified prior to the flowing of any water.

Typical cooling water connections:

DESCRIPTION	KJLC SYSTEM CONNECTION	CUSTOMER SUPPLIED
SYSTEM COMPONENTS	1-INCH FNPT	1-INCH MNPT
CRYO COMPRESSOR	0.5 INCH FNPT	0.5 INCH MNPT

NOTE: Connections are for Supply and Return lines.

System cooling supplies:

KJLC PART NUMBER	DESCRIPTION
PET025B+	TUBING, POLYETHYLENE, 1/4" OD, BLUE
PET025R+	TUBING, POLYETHYLENE, 1/4" OD, RED
PVCBT025	TUBING, PVC, NYLON REINFORCED, 1/4" ID, 3/32" WALL
B-10MO-1-6	FITTING, SWAGELOK CONNECTOR, BRASS, 10MM TUBE OD X 3/8" MNPT
B-15M0-1-8	FITTING, MALE CONNECTOR, BRASS, 15MMT X 1/2" MNPT
4429K424	FITTING, HEX BUSHING, BRASS, 1" MNPT TO 1/2" FNPT

Systems can be fitted with individual cooling systems. KJLC does offer water chillers as part of the system. Standard KJLC offered units are as follows. Other units are available - Consult KJLC Sales for proper size and cost.

KJLC PART NUMBER	DESCRIPTION
TT100/10T31H	CHILLER, CLOSED LOOP, 10,000 BTU, 6 GPM AT 60 PSI, AIR COOLED
TT100/15/T41	CHILLER, CLOSED LOOP, 15,000 BTU, 8 GPM AT 60 PSI, AIR COOLED
TT150/15/T41	CHILLER, CLOSED LOOP, 15,000 BTU, 8 GPM AT 60 PSI, WATER COOLED
TT10015C200S	CHILLER, CLOSED LOOP, 15,000 BTU, 15 GPM AT 60 PSI, AIR COOLED

NOTE: GPM = Gallons per minute, PSI = Pounds per square inch.

If purchased as part of the system contract, KJLC supplied chillers require the use of a glycol / water solution. The general recommendation is a 2:1 mix of water to glycol solution. Use only distilled or purified water in chillers to prevent damage to internal chiller and system components. Check with individual chiller manufacturers or the applicable service guides for further information.

KJLC CHILLER COMPONENTS

KJLC PART NUMBER	DESCRIPTION
5304K715	HOSE, RUBBER, BLACK, 3/4" NPT, 10 FT
5304K273	HOSE, RUBBER, BLACK, 3/4" NPT, 15 FT
5304K67	HOSE, RUBBER, BLACK, 3/4" NPT, 25 FT
5304K57	HOSE, RUBBER, BLACK, 1"ID, 200 PSI, 25 FT
5304K721	HOSE, RUBBER, BLACK, 1-1/2" M-F NPT, 10 FT
KJLEGG1	ETHYLENE GLYCOL HEAT TRANSFER FLUID, 1 GALLON
KJLEGG5	ETHYLENE GLYCOL HEAT TRANSFER FLUID, 5 GALLON

COMPRESSED AIR (PNEUMATICS)

Most tools and all computer controlled tools require a clean, dry compressed air supply for actuation of valves, shutters and other motion related components.

PNEUMATIC CONTROLS

Make the required connection to the bulkhead fitting or the backside of the pressure regulator located in the rear of the system. The General Assembly Schematic and utility document should be referenced.

Before installation, purge all newly constructed utility lines to remove all loose materials, such as thread compound, PTFE and tapes. Also be sure to remove any remaining burrs from the tube edges before connecting to the system.

BULKHEAD CONNECTION

PRESSURE REGULATOR

The compressed Air supplied to the system is to be Clean Dry Air (CDA). The air is to be free of dirt, moisture, and compressor lubricating oils. It is recommended that an air oil separator, as well as a desiccant filter, be installed prior to the air entering the system to help assure reliable and long lasting operation of the system pneumatic valves.

Polyethylene or Teflon tubing can be used for to supply compressed air with the following characteristics.

- 80 90 psi (552 621 kPa)
- $\leq 5 \,\mu m$ particle filtration
- Dry, non-lubricated

KJLC does not recommend the use of Nitrogen in place of compressed air. Effects of dry Nitrogen observed over time included gradual changes in some lubricants and the seals commonly used in pneumatic products. Seals have been observed to dry out and some lubricant will thicken as the dry N2 accelerates evaporation. This process may take some time, but can shorten the life of the product. The effect is more pronounced in dynamic seals then in static seals, so is more of an issue in pneumatic valve and cylinders then in fittings and flow controls.

Typical compressed air connections:

DESCRIPTION	KJLC System Connection	CUSTOMER SUPPLIED
CDA	1/4" SWAGELOK TUBING	1/4" O.D. TUBE

Compressed air supplies:

KJLC PART NUMBER	DESCRIPTION
PET025	TUBING, POLYETHYLENE, 1/4" OD, NATURAL COLOR
TT025	TUBING, TEFLON, 5/32"ID, 1/4" OD
SST-00251	TUBING, 304L SST, RIGID, 1/4" OD, .028" WALL
SS-6MO-R-4	REDUCER, SS, 6MM TUBE X 1/4" TUBE STUB
SS-401-PC	FITTING, SWAGELOK, SS, 1/4" TUBE PORT CONNECTOR
NITROGEN GAS

All tools require a clean Nitrogen supply for chamber venting and cryo pump regeneration, if applicable.

Make the required connection to the bulkhead fitting or the backside of the pressure regulator located in the rear of the system. The General Assembly Schematic and utility document should be referenced.

Before installation, purge all newly constructed utility lines to remove all loose materials, such as thread compound, PTFE and tapes. Also be sure to remove any remaining burrs from the tube edges before connecting to the system.

BULKHEAD CONNECTION

VENT REGULATOR

REGEN REGULATOR

Teflon or stainless steel tubing can be used to supply Nitrogen with the following characteristics.

- Vent 10 psi (69 kPa)
- Cryo Pump Regeneration 40 psi (69 kPa)
- $\underline{q} \leq 5 \mu m$ particle filtration

Typical nitrogen connections:

DESCRIPTION	KJLC System Connection	CUSTOMER SUPPLIED	
NITROGEN	1/4" SWAGELOK Tube Fitting	1/4" O.D. TUBE	

Nitrogen gas supplies:

KJLC PART NUMBER	DESCRIPTION
TT025	TUBING, TEFLON, 5/32" ID, 1/4" OD
SST-0025I	TUBING, 304L SST, RIGID, 1/4" OD, .028" WALL
SST-0025CI	TUBING, 316L SST, RIGID, 1/4" OD, .035" WALL, ELECTROPOLISHED

Copper tubing is not recommended for use due to potential internal oxidation and residue that may contaminate the chamber and disrupt sensitive processes.

PROCESS GAS

PVD 75

Most tools require a clean process gas supply for depending on the processed be performed.

Connect the required process gas to the bulkhead fitting or Mass Flow Controller (MFC) located in the rear of the system. The General Assembly and Process Gas Schematics should be referenced.

Before installation, purge all newly constructed gas lines to remove all loose materials. Also be sure to remove any remaining burrs from the tube edges before connecting to the system.

BULKHEAD CONNECTION

MFC CONNECTION

Stainless steel, electro-polished tubing should be used to supply process gases with the following characteristics.

- 5-7 psi (35-48 kPa)
- 99.999% purity
- $\leq 5 \,\mu m$ particle filtration

Sharp bends should be avoided when using electro-polished tubing. Sharp bends can introduce micro-cracks on the inside diameter of the tubing and be a potential source of contamination.

Typical process gas connections:

DESCRIPTION	KJLC System Connection	CUSTOMER SUPPLIED
MFC - VCR	1/4" MALE VCR	1/4" FEMALE VCR
MFC - SWAGELOK	SS-4WVCR6400 ADAPTER	1/4" O.D. TUBE
NEEDLE VALVE - SWAGELOK	1/4" SWAGELOK TUBE FITTING	1/4" O.D. TUBE

NOTE: Tube fitting connections should be avoided when connecting process gases whenever possible.

Process gas supplies:

KJLC PART NUMBER	DESCRIPTION
SST-0025CI	TUBING, 316L SST, RIGID, 1/4" OD, .035" WALL, ELECTROPOLISHED
SS-4WVCR6400	ADAPTER, SS, 1/4" FVCR TO 1/4"OD TUBE, SWAGELOK
4FVCR-N	NUT, FEMALE, VCR, CAJON, SS, 1/4"
4FVCR-GL	GLAND, VCR, CAJON, STAINLESS STEEL, 1/4 " TUBE SOCKET
4XVCR-GAC	GASKET, VCR, CAJON, COPPER, 1/4"

Copper tubing is not recommended for use due to potential internal oxidation and residue that may contaminate the chamber and disrupt sensitive processes.

It is recommended that each individual gas connection to the system have its own shut off valve in a location close to the inlet connection. Systems using individual bottled gasses within short distances of the system do not need shut off valves since valves are typically located on the gas bottles.

EXHAUST CONNECTIONS

Depending on the types of processes being performed and / or applicable safety regulations, some systems may need to have their exhaust port connected to an exhaust system. This prevents hazardous gases or particles from getting into the lab space. The two main connections are cryo pumps and mechanical pumps.

During the regeneration of a cryo pump, the trapped gases are expelled through the rear vent valve. KJLC installs an exhaust adapter to these valves for ease of connection. Mechanical pumps will exhaust all gases present in the chamber being evacuated.

PUMP EXHAUST

MECHANICAL PUMP EXHAUST

Typical exhaust connections:

DESCRIPTION	KJLC System Connection	CUSTOMER SUPPLIED
CRYO PUMP	QF16 OR 3/8" HOSE FITTING	QF16 OR 3/8" HOSE CONNECTION
MECH PUMP	QF16, QF25 OR QF40 (PUMP DEPENDENT)	QF16, QF25 OR QF40 (PUMP DEPENDENT)
SYSTEM	QF16 OR QF25 (PUMP DEPENDENT)	QF16 OR QF25 (PUMP DEPENDENT)

Exhaust / vent supplies:

KJLC PART NUMBER	DESCRIPTION
8080250K008	CRYO PUMP RELIEF VALVE ADAPTER KIT
8080250K031	RELIEF VALVE FILTER FOR CTI-8F
QF16-075-ARB	CENTERING RING, ALUM, QF16, BUNA O-RING
QF16-075-C	CLAMP, ALUMINUM, QF16, CAST 1/2" & 3/4"
PT075QF16-5	CLEAR REINFORCED HOSE ASSEMBLY, 3/4" ID, QF16, 5FT
PT075QF16-10	CLEAR REINFORCED HOSE ASSEMBLY, 3/4" ID, QF16, 10FT
PT075QF16-25	CLEAR REINFORCED HOSE ASSEMBLY, 3/4" ID, QF16, 25FT
QF25-100-ARB	CENTERING RING, ALUM, QF25, BUNA
QF25-100-C	CLAMP, ALUMINUM, QF25, CAST 1"
PT100QF25-5	CLEAR REINFORCED HOSE ASSEMBLY, 1" ID, QF25, 5FT
PT100QF25-10	CLEAR REINFORCED HOSE ASSEMBLY, 1" ID, QF25, 10FT
PT100QF25-25	CLEAR REINFORCED HOSE ASSEMBLY, 1" ID, QF25, 25FT
QF40-150-ARB	CENTERING RING, ALUM, QF40, BUNA
QF40-150-C	CLAMP, ALUMINUM, QF40, CAST 1-1/2"
PT150QF40-5	CLEAR REINFORCED HOSE ASSEMBLY, 1-1/2" ID, QF40, 5FT
PT150QF40-10	CLEAR REINFORCED HOSE ASSEMBLY, 1-1/2" ID, QF40, 10FT
PT150QF40-25	CLEAR REINFORCED HOSE ASSEMBLY, 1-1/2" ID, QF40, 25FT

ADDITIONAL UTILITY CONNECTIONS

The previous information listed the basic components and parts that may be needed in the installation of your new KJLC system. Various configurations may require specific connection components to complete the installation process. Please reference the system schematics and utility documentation to determine exact system requirements.

START-UP

Prior to the start-up and operation of any system equipment, the intended operator should review the individual equipment manuals and this Operation Manual.

- 1) Ensure that all utilities are properly installed per the previous section.
- 2) With all of the power distribution unit's secondary circuit breakers off, turn on the main circuit breaker. Systems with 3-phase power should determine that all phase lights on the power distribution unit are illuminated.
- 3) Verify that the start/stop circuit is on and that all EMO buttons are not triggered (reset by pulling out and rotating). Leave the system in a stopped state when this test is complete
- 4) Turn off the power switches on all instrumentation and plug strips. Start the system power and turn on the breaker(s) for the instrumentation outlet strip(s) ONLY.
- 5) Power up and verify (per the Power Distribution Schematic) that all devices are plugged into appropriate outlets on the power distribution unit or plug strip(s) in order to satisfy circuit breaker assignments.
- 6) Verify that plumbing into and out of pump is correct and that the pump has been filled with oil, if applicable.
- 7) Verify that the chamber motors and shutters are not obstructed and move freely.
- 8) Verify that all required communication and power connections to the system computer are connected and working properly.
- 9) Start-up the system control software (refer to the Software Operation section).
- 10) Verify all set points (heaters, power supplies, etc.) before starting the pump down sequence.

OPERATION OVERVIEW

Once the system has been successfully installed, the required utility connections have been made, and the start-up procedure completed, the system is ready for operation. Prior to operating the system, read through and become familiar with all instructions and with the schematics provided in the appendices.

There are three modes of system operation:

- <u>Manual</u> no computer interface or automated processes are provided
- <u>Computer Control</u> a computer interface is used to operate the system manually
- <u>Recipe Driven Computer Control</u> a complete computer control software package allowing for process control and creating and running recipes. This is the highest level of automation available.

MANUAL OPERATION

The procedures described on the following pages are for manual operation of the system and its components.

There may be sections of this manual that describe optional features that are not included in your system configuration. Please disregard these sections.

PUMPDOWN PROCEDURES

This section describes pumpdown procedures for various system configurations.

CRYOPUMP WITH LOAD LOCK CHAMBER

- 1) Verify all connections to the system are made. Power, water, process gas, vent gas, and vacuum connections to mechanical pump should be checked.
- 2) Verify that the cryo pump is cold and ready for use (<20K). If not, refer to Cryo Regeneration procedure. (Refer to the On-Board manual for On-Board cryo pump regeneration procedure.)
- 3) Verify that both the process chamber and the load lock chamber are at atmosphere. If not, refer to the Chamber Vent procedure.
- 4) Open the load lock isolation valve.
- 5) If operating the system for the first time, open the capacitance manometer isolation valve (if installed) and any gas isolation valves.
- 6) Start the system roughing pump and verify that the foreline pressure is less than 1 Torr.
- 7) Open the roughing valve.
- 8) Open load lock gate valve, if applicable. (System roughs through the load lock turbo pump.)
- 9) Rough the system to approximately 500 Torr as read by the process chamber convection gauge. (Refer to gauge controller manual for convection gauge operating instructions.)
- 10) Turn on the load lock turbo pump.
- 11) When the convection gauge in the process chamber is below 200 mTorr, close the load lock isolation valve (wait for it to close completely) and open the hivac gate valve to the cryo pump.
- 12) Wait for 10 seconds and when the pressure on the convection gauge is <1.0e-3 Torr, turn on the ion gauge. (Refer to gauge controller manual for operating instructions.)

At this point the vacuum system is under vacuum and ready for use. Refer to individual component manuals for operation of gas flow equipment and gauging equipment.

CRYOPUMP WITHOUT LOAD LOCK CHAMBER

- 1) Verify all connections to system are made. Power, water, process gas, vent gas, and vacuum connections to mechanical pump should be checked.
- 2) Verify that the cryo pump is cold and ready for use (<20K). If not, refer to the Cryo pump Regeneration procedure. (Refer to the On-Board manual for On-Board cryo pump regeneration procedure.)
- 3) If operating the system for the first time, open the capacitance manometer isolation valve (if installed) and any gas isolation valves.
- 4) Start the system roughing pump and verify that the foreline pressure is less than 1 Torr.
- 5) Open the roughing valve.
- 6) Rough the system to approximately 200 mTorr as read by the process chamber convection gauge. (Refer to gauge controller manual for convection gauge operating instructions.)
- 7) Close roughing valve.
- 8) Open the hivac gate valve to the cryo pump.
- 9) When the process chamber convection gauge is below 1.0e-3 mTorr turn on the ion gauge. (Refer to gauge controller manual for operating instructions.)
- 10) Turn off roughing pump.

At this point the vacuum system is under vacuum and ready for use. Refer to individual component manuals for operation of gas flow equipment and gauging equipment.

TURBO PUMP WITH LOAD LOCK CHAMBER

- 1) Verify all connections to system are made. Power, water, process gas, vent gas, and vacuum connections to mechanical pump should be checked.
- 2) Turn on the mechanical rough pump and wait for the foreline pressure to reach less than 1 Torr. (Refer to gauge controller manual for convection gauge operating instructions.)
- Open the process chamber turbo backing valve and turn on the turbo pump. (Wait for the turbo to reach full speed.)
- 4) Verify that both the process chamber and the load lock chamber are at atmosphere. If not, refer to the Chamber Vent procedure.
- 5) Open the load lock isolation valve.
- 6) If operating the system for the first time, open the capacitance manometer isolation valve (if installed) and any gas isolation valves.
- 7) Close the process chamber turbo backing valve.
- 8) Open the roughing valve. (System roughs through load lock turbo pump.)
- 9) Open the load lock gate valve, if applicable.
- 10) Rough the system to approximately 500 Torr as read by the process chamber convection gauge. (Refer to gauge controller manual for convection gauge operating instructions.)
- 11) Turn on the load lock turbo pump.
- 12) When the convection gauge in the process chamber is below 100 mTorr, close the isolation valve (wait for it to close completely) and close the roughing valve.
- 13) Verify that the foreline pressure is below 50 mTorr and then open the process chamber turbo backing valve.
- 14) Verify that the process chamber pressure does not go above 200 mTorr and then open the hivac valve to the process chamber turbo.
- 15) Wait for 10 seconds and when the pressure on the process chamber convection gauge is <1.0e-3 Torr, turn on the ion gauge. (Refer to gauge controller manual for operating instructions.)
- 16) Open the roughing valve to the load lock turbo.

At this point the vacuum system is under vacuum and ready for use. Refer to individual component manuals for operation of gas flow equipment and gauging equipment.

TURBO PUMP WITHOUT LOAD LOCK CHAMBER

- 1) Verify that all connections to the system are made. Power, water, process gas, vent gas, and vacuum connection to mechanical pump should be checked.
- 2) If operating the system for the first time, open the capacitance manometer isolation valve (if installed) and any gas isolation valves.
- 3) Open the high vacuum valve. (System roughs through turbo pump.)
- 4) Start the system roughing pump and verify that the system pressure is decreasing.
- 5) Rough the system to approximately 200 mTorr as read by the process chamber convection gauge. (Refer to gauge controller manual for convection gauge operating instructions.)
- 6) Turn on the turbo pump. (Refer to the turbo pump manual for complete operation instructions.)
- 7) When the turbo pump is at speed and the process chamber convectron gauge is below 1.0e-3 Torr, turn on the ion gauge. (Refer to gauge controller manual for operating instructions.)

At this point the vacuum system is under vacuum and ready for use. (Refer to individual component manuals for operation of the gas flow equipment and gauging equipment.)

VENT PROCEDURES

This section describes the various system vent procedures.

TURBO PUMP VENT

- 1) Verify that all source and heater supplies are turned off.
- 2) Turn off the ion gauge filament.
- 3) Turn off all gas flow.
- 4) Turn off the turbo pump.
- 5) Close turbo backing valve.
- 6) Turn off the mechanical pump.
- 7) Open the vent valve, if applicable.
- 8) Wait until the system reaches atmospheric pressure. The convectron gauge can be used as an estimation, however this may have some degree of error.

At this point the vacuum system is at atmosphere. The chamber door can now be opened. (Refer to individual component manuals to make sure all equipment is in a safe mode.)

LOAD LOCK VENT

- 1) Turn off the ion gauge filament.
- 2) Turn off the turbo pump.
- 3) Close the roughing valve.
- 4) Open the turbo vent valve.
- 5) Wait until the system reaches atmospheric pressure.
- 6) Close the turbo vent valve.

At this point the vacuum system is at atmosphere. The load lock door can now be opened. Refer to manufacturers' manuals to make sure all equipment is in a safe mode.

TURBO WITHOUT LOAD LOCK VENT

- 1) Turn off the ion gauge filament.
- 2) Verify that all gas valves are closed and all source and heater supplies are off.
- 3) Verify that the heater is <80°C.
- 4) Turn off the turbo pump.
- 5) Close the foreline valve.
- 6) Ensure the pump speed is < 80°C. If applicable, open the turbo vent valve.
- 7) Wait until the system reaches atmospheric pressure.
- 8) Close the turbo vent valve.

At this point the vacuum system is at atmosphere. The top plate can now be opened. Refer to manufacturers' manuals to make sure all equipment is in a safe mode.

TURBO AND CRYO PUMP WITH LOAD LOCK, CRYO PUMP WITHOUT LOAD LOCK VENT

- 1) Turn off the ion gauge filament.
- 2) Verify that all gas valves are closed and all source and heater supplies are off.
- 3) Verify that the heater is <80°C.
- 4) Close the hivac valve.
- 5) Open the process chamber vent valve.
- 6) Wait until the system reaches atmospheric pressure.
- 7) Close the process chamber vent valve.

At this point the vacuum system is at atmosphere. The top plate can now be opened. Refer to manufacturers' manuals to make sure all equipment is in a safe mode.

PROCESS CHAMBER VENT

- 1) Close the hivac and roughing valves (as applicable).
- 2) Turn off the ion gauge.
- 3) Close the capacitance manometer isolation valve (if applicable).
- 4) Zero all process gas channels.
- 5) Close all process gas shut-off valves.
- 6) Open the nitrogen gas vent valve.
- 7) Wait until chamber pressure reaches 1 atmosphere (760 Torr).
- 8) Close the vent valve.

LOAD LOCK CHAMBER VENT

- 1) Close the load lock isolation valve.
- 2) Turn off the load lock turbo pump.
- 3) Wait for the turbo pump to slow to 50%.
- 4) Close the load lock roughing valve.
- 5) Open the load lock vent valve.
- 6) Wait until the load lock pressure reaches atmosphere.
- 7) Close vent valve.

CRYOPUMP REGENERATION PROCEDURE

The following section describes the cryo pump regeneration procedure.

A Cryo-Torr cryo pump periodically requires a regeneration cycle to return it to its original operating capabilities. Gasses captured from a vacuum chamber and trapped in the cryo pump through the condensation and cryo-adsorption is held primarily in an ice-like form. A regeneration cycle removes trapped gasses through a process similar to defrosting a refrigerator freezer. If the cryo pump becomes incapable of maintaining high vacuum (typically an increase in your vacuum chamber base-pressure by a factor of 10, even though the cold head and the compressor unit are operating satisfactorily), the cryo pump requires regeneration.

It is recommended that your cryo pump be regenerated on a regular schedule that coincides with system maintenance, weekend system shutdown, etc. A suitable time interval between regeneration cycles can be determined from experience.

- 1) Close the hivac isolation valve.
- 2) Shut off the cryo pump by setting the power switch on the compressor to the OFF position.
- 3) If the system has a cryo purge heater, immediately introduce heated dry purge gas through the vessel purge fittings at approximately 150°F (66°C) and at a flow rate of 1-2 cfm. Allow the purge gas to vent through the relief valve.
- 4) Halt the gas purge when the condensing arrays reach 80° F (26° C) (300K).
- 5) When the condensing arrays reach ambient temperature, rough the cryo pump to an initial starting pressure between 50 and 100 mTorr.
- 6) Perform the rate-of-rise test as follows:
- 7) Once the roughing cycle has roughed the cryo pump starting pressure between 50-100 mTorr, close the roughing valve.
- 8) Observe the rate-of-rise (ROR) over a five-minute period.

- 9) If the ROR is greater than 50 mTorr, re-purge the cryo pump, check for leaks, and repeat steps 5 and 6. If not, open the rough valve and pump to initial pressure.
- 10) Close the cryo pump roughing valve and start the cryo pump.
- 11) The cryo pump is ready for use when the second stage array reaches a temperature of 20K or lower.

- 1) Locate the valve panel in instrument rack.
- 2) Locate the switch that coincides with the device to be actuated (i.e. valve, shutter, etc.).
- 3) Actuate the switch to the desired labeled position (on/open; off/close).

ACAUTION

Use caution when changing the state of any valve, check that it will not affect any state of the system adversely to avoid serious equipment damage.

SAMPLE TRANSFER PROCEDURES

SAMPLE LOADING

- 1) Make sure that a sample and carrier are loaded on to the LRP end effecter (fork), and that nothing is loaded onto the platen assembly.
- 2) Make sure that the load lock chamber is pumped down to at least 100 mTorr.
- 3) Open the isolation valve between the load lock and process chambers.
- 4) Jog the platen rotation to accept sample transfer. (Align the two ceramic standoffs on the platen assembly via the viewport.)
- 5) Open the substrate shutter (if applicable).
- 6) Lower the platen assembly to the bottommost position using the hand wheel on the transfer z-shift located on the chamber top plate.
- 7) Extend the LRP by rotating the knob on the LRP's rotary feedthrough.
- 8) Visually align the sample carrier with the counter bore on the sample platen using the chamber viewport.
- 9) When the carrier is aligned, raise the platen assembly using the transfer z-shift until the carrier is lifted from the LRP end effecter (fork). This is considered the "Transfer Position".
- 10) Retract the LRP completely (until it reaches the mechanical limit).
- 11) Raise the transfer z-shift to the uppermost position so that the platen is engaged in the heater assembly.
- 12) Close the load lock isolation valve between the load lock and the process chamber.

Use caution when jogging the platen rotation while the LRP is extended to avoid serious equipment damage.

Use caution when raising and lowering the z-shift when the LRP is extended to avoid serious equipment damage.

Open the substrate shutter before lowering platen assembly.

SAMPLE UNLOADING

SAMPLE UNLOADING COMPONENTS

- 1) Make sure that nothing is loaded onto the LRP end effecter.
- 2) Make sure that the load lock chamber is pumped down to at least 100 mTorr.
- 3) Open the isolation valve between the load lock and process chambers.
- 4) Jog the platen rotation to accept sample transfer. (Align the two ceramic standoffs on the platen assembly via the viewport.)
- 5) Open the substrate shutter (if applicable).
- 6) Lower the platen assembly to the "transfer position" using the hand wheel on the transfer z-shift located on the chamber top plate.
- 7) Extend the LRP by rotating the knob on the LRP's rotary feedthrough.
- 8) Adjust the platen height if necessary so that the fork can be extended under the shoulder of the sample carrier.
- 9) Jog the LRP so that the fork is fully engaged with the carrier.
- 10) When the fork is aligned, lower the platen assembly using the transfer z-shift until the carrier is lifted off of the platen.
- 11) Retract the LRP completely (until it reaches the mechanical limit).
- 12) Raise the transfer z-shift to the uppermost position so that the platen is engaged in the heater assembly.

13) Close the load lock isolation valve between the load lock and the process chambers.

Use caution when jogging the platen rotation while the LRP is extended to avoid serious equipment damage.

Z-SHIFT SETUP AND OPERATION

- 1) Verify the platen rotation is in a safe position. (Refer to Sample Rotation Setup and Operation procedure.)
- 2) Verify the substrate shutter is open.
- 3) Verify the LRP is in a safe position. (Refer to LRP Setup and Operation procedure.)
- 4) Rotate the knob/wheel on z-shift to achieve the desired position. (Z-shift is located either on the top plate or on the bottom of the chamber.)

THREE MAIN Z-SHIFT POSITIONS

- <u>Full open</u> Extended to accept the wafer/carrier.
- <u>Full closed</u> Retracted to engage the heater.
- <u>Transfer</u> The point where the wafer carrier is engaged in the platen and lifted free from the forks.

ACAUTION

Use caution when moving the platen z-shift while the LRP is extended to avoid serious equipment damage. Do not rotate while the top plate of the system is open to avoid injury and/or equipment damage. Do not move the platen z-shift while the substrate shutter is closed to avoid serious equipment damage.

SAMPLE HEATING SETUP AND OPERATION

- 1) Verify the presence of a substrate on the platen and that the system is under vacuum.
- 2) The temperature will be controlled with a heater controller.
- 3) Refer to heater controller manual for further details on operation.

ACAUTION

Do not vent while heater temperature is >80°C to avoid injury or equipment damage. Use caution when removing the substrate from the chamber, it may be extremely hot.

SUBSTRATE SHUTTER SETUP AND OPERATION

The following section describes substrate shutter setup and operation.

MANUAL SUBSTRATE SHUTTER PROCEDURE

- 1) Verify that the shutter covers substrate. This is the closed position. (This eliminates unwanted deposition on the substrate. It also minimizes/eliminates cross deposition.)
- 2) If the shutter is not in the closed position, rotate the shutter feedthrough knob to close the shutter.
- 3) Rotate shutter feedthrough knob to open the shutter.

MANUAL PNEUMATIC SHUTTER PROCEDURE

- 1) Verify that the shutter covers deposition source. This is the closed position. (This eliminates unwanted deposition on the substrate. It also minimizes/eliminates cross deposition.)
- 2) If the shutter is not closed, rotate the shutter by either loosening the shutter actuator bracket clamp and rotating the actuator (external) or loosening the shutter blade clamp and rotating the shutter blade (internal).
- 3) If the shutter blade clamp is loosened, make sure to re-position the shutter height to its original offset.
- 4) To open/ close the shutter, actuate the switch on the valve panel. (Refer to *Valve Panel Operation* procedure.)
- 5) If the shutter speed control setting opens/closes the shutter too slowly/quickly, the speed can be adjusted on the shutter assembly with the speed/flow control valve.

SAMPLE BIAS SETUP AND OPERATION

 ${\ensuremath{\stackrel{@}{=}}}$ The z-shift must be in fully retracted position before running bias.

- 1) Verify the presence of a wafer in the platen and system is under vacuum.
- 2) Turn off the ion gauge.
- 3) Throttle the hivac valve.
- 4) Open the gas ring valve.
- 5) Initiate gas flow and set gas flow/chamber pressure to desired setting. This value usually falls between 1.5 and 15 mTorr. Refer to *Gas Flow Setup and Operation* procedure for further details.
- 6) Turn on the bias power supply. Refer to power supply manual.
- 7) Turn on the bias power supply output.
- 8) Set bias output power level.
- 9) When finished turn off the supply and reset the output to zero.
- 10) Shut off gas flow.
- 11) Close the gas ring valve.
- 12) Unthrottle the hivac valve.
- 13) Once chamber has achieved proper crossover, turn the ion gauge on.

If running RF verify plasma on platen by noting a bias voltage on the matching network to avoid injury or equipment damage. Use caution when removing substrate from chamber, it may be extremely hot. Do not touch any connections while power supply is on.

GAS FLOW SETUP AND OPERATION

The following section describes system pressure control options. Refer to applicable procedure for operating instructions.

MANUAL PRESSURE CONTROL (NEEDLE VALVE)

- 1) If hooking up the system for the first time or changing to a new tank, proceed to step 2. If using a previously used set up go to step 6.
- 2) Use only clean lines to connect gas to the system. (Purge the gas lines while connecting.)
- 3) Pump down the system.
- 4) Pump out the gas supply lines. (Close the tank or wall supply valve, put the gate valve in the throttle position, open system gas valve(s), and fully open needle valves.)
- 5) When finished, close all system gas valves, open the tank or wall supply valve, and adjust line pressure to >5psig and<15psig.
- 6) Verify that the system is under high vacuum.
- 7) Verify that required gas is hooked to the system.
- 8) Put the high vacuum valve in the throttle position.
- Open the gas inlet valve and the appropriate gas channel valve(s) and set the gas flow/chamber pressure to the desired setting. This setting usually lies between 1.5 and 15 mTorr for deposition or 100 and 400 mTorr for glow discharge.
- 10) When finished, close the gas inlet valve and the gas channel valve(s) and set gas flow/chamber pressure to zero.
- 11) Turn off throttle valve (full open).

DANGER

Use appropriate safety measures for gas type(s) selected to prevent personal injury or equipment damage.

- 1) If hooking up the system for the first time or changing to a new tank, proceed to step 2. If using a previously used set up go to step 6.
- 2) Use only clean lines to connect gas to the system. (Purge gas lines while connecting.)
- 3) Pump down the system.
- 4) Pump out gas supply lines. Close the tank or wall supply valve, throttle the gate valve, open system gas valve(s), and fully open flow valves. (Refer to 247/250 manual for proper operation.)
- 5) When finished, close all system gas valves, open the tank or wall supply valve, and adjust line pressure to >5psig and<15psig.
- 6) Verify the system is under high vacuum.
- 7) Turn off the ion gauge.
- 8) Verify proper gas is hooked to system.
- 9) Throttle the hivac valve.
- 10) Open the capacitance manometer isolation valve if applicable. (Check that the capacitance manometer reads zero.)
- Open the gas inlet valve and the appropriate gas channel valve(s) and set gas flow/chamber pressure to the desired setting. This setting usually lies between 1.5 and 15 mTorr for deposition or 100 and 400 mTorr for glow discharge. (Refer to 247/250 manual for proper operation.)
- 12) When finished, close the gas inlet valve and the gas channel valve(s) and set gas flow/chamber pressure to zero.
- 13) Unthrottle the hivac valve.
- 14) Turn on the ion gauge.

Do not unthrottle or open the hivac valve while the system pressure is above 200 mTorr to prevent equipment damage.

Use appropriate safety measures for gas type(s) selected to prevent personal injury or equipment damage.

AUTO PRESSURE CONTROL (647)

- 1) If hooking up the system for the first time or changing to a new tank, proceed to step 2. If using a previously used set up go to step 6.
- 2) Use only clean lines to connect gas to the system. (Purge gas lines while connecting.)
- 3) Pump down the system.
- 4) Pump out gas supply lines. Close the tank or wall supply valve, throttle the gate valve, open system gas valve(s), and fully open flow valves. (Refer to 647 manual for proper operation.)
- 5) When finished, close all system gas valves, open the tank or wall supply valve, and adjust line pressure to >5psig and<15psig.
- 6) Verify the system is under high vacuum.
- 7) Turn off the ion gauge.
- 8) Verify that proper gas is hooked to system.
- 9) Throttle the hivac valve.
- 10) Open the capacitance manometer isolation valve if applicable. (Check that the capacitance manometer reads zero.)
- 11) Open the gas inlet valve and the appropriate gas channel valve(s) and set gas flow/chamber pressure to the desired setting. This setting usually lies between 1.5 and 15 mTorr for deposition or 100 and 400 mTorr for glow discharge. (Refer to 647 manual for proper operation.)
- 12) When finished, close the gas inlet valve and the gas channel valve(s) and set gas flow/chamber pressure to zero.
- 13) Unthrottle the hivac valve.
- 14) Turn on the ion gauge.

Do not unthrottle or open the hivac valve while the system pressure is above 200 mTorr to prevent equipment damage.

Use appropriate safety measures for gas type(s) selected to prevent personal injury or equipment damage.

SPUTTER SOURCE SETUP AND OPERATION

All TORUS[®] source designs are based on a patented, modified Penning Discharge Principle which incorporates powerful, permanent magnets and specific pole pieces to configure the sources' magnetic field just above the plane of the target. The result is a combination of film uniformity, deposition rate, target utilization, operation at lower vacuum chamber pressures, and efficient power usage.

With a TORUS[®] source, movement of the secondary electrons emitted during sputtering are confined by an electrical field and a strong magnetic field; the TORUS[®] captures electrons released near the target, concentrates them, and employs them to develop higher sputtering power. Resultant films are uniform, homogeneous and small grained; they have high density (low void area) with high specularity (reflectance), and are free of radiation damage and broken bonds.

SAFETY

A DANGER

- A proper earth ground connection is required to avoid electrical shock and fire hazards.
- Great care must be taken to ensure the following:
 - ALL sources of high voltage are isolated prior to connecting/disconnecting equipment.
 - ALL high frequency sources are isolated prior to handling any equipment connections.
- Lack of proper coolant flow to the source can be potentially harmful to the user and will damage the sputtering source.

Visually inspect equipment daily for water leaks and equipment condition.

ELECTRICITY

The TORUS[®] source operates with high voltage DC, pulsed DC and RF industrial power supplies. Be sure all devices exposed to operating personnel are electrically connected, grounded, and protected properly. Before turning on the electrical power to the source, check to ensure that the anode and the cathode of the TORUS[®] source are isolated and the chamber, the body of the electrical connector and the anode (Dark Space Shield and Body) are grounded.

Setup

Over time the shutter open/close speed may need adjusted.

- 1) Close the shutter speed adjustment valves (clockwise see Figure 1).
- 2) Toggle the shutter to open (the shutter should not open yet).
- 3) Check which airline has pressure on it and slowly adjust the other speed valve counter-clockwise until the shutter opens.
- 4) Toggle the shutter to close (the shutter should not close yet).
- 5) Slowly adjust the other speed control valve counter-clockwise until the shutter closes.
- 6) Recheck the shutter open and close and adjust the speed valves so that the shutter operates smoothly.

FIGURE 1

SYSTEM EQUIPMENT REQUIREMENTS

Typical sputtering systems will have the following interlocks:

- Water Flow Sensors For Each Sputter Source
- Vacuum Switch

When the water supply and return valves are open, the water flow switch should be satisfied, resulting in the flow switch changing from gray to green.

FIGURE 2 WATER FLOW SENSORS (FLOW SWITCH)

FIGURE 3

The water flow sensors are located on the cooling water return manifold.

The cooling flow sensors are factory set and are not adjustable. The setting of each sensor is marked on the label.

MANUAL OPERATION THROUGH CWARE

DC SPUTTERING

3-POSITION HIGH VACUUM VALVE SYSTEM

- 1) Pump down the vacuum chamber to high vacuum. The choice of base pressures is the decision of the user and determined by acceptable impurity levels.
- Select the Vacuum screen. Set high vacuum valve to throttle position (see Figure 3).
- 3) Select the Gas screen. Open source gas valve or gas injection valve (depending on system configuration see Figure 6).
- 4) Set MFC1 mode to 4.
- 5) Set Capman pressure set point to 5 (mTorr).
- 6) Wait for chamber pressure to stabilize.

Most target materials can be sputtered with an Argon pressure of 1 to 15 millitorr, but some materials will require a higher pressure.

- 7) Select the Deposition screen. Turn on DC power supply output (See Figure 5).
- 8) Set power supply ramp rate (typically 10-20 watts per second).
- 9) Set power supply output set point to desired power.

10) If the voltage reads zero even though the power supply indicates current, the source or cable is short-circuited. Switch off the power supply and take the proper corrective connecting measures (See Troubleshooting section in KJLC TORUS[®] manual). Once the short is repaired, repeat steps 2-9. A voltage reading of 600-1000 volts with no current could indicate several problems. Turn off the power supply and follow the procedures outlined in the Troubleshooting section of the KJLC TORUS[®] manual.

VARIABLE SPEED TURBO PUMP SYSTEM - NO HIGH VACUUM VALVE

- 1) Pump down the vacuum chamber to high vacuum. The choice of base pressures is left to the user and determined by acceptable impurity levels.
- 2) Select the Vacuum screen. Set turbo pump speed to 50% (see Figure 4).
- 3) Select the Gas screen. Open source gas valve or gas injection valve (depending on system configuration see Figure 6).
- 4) Set MFC1 mode to 4.
- 5) Set Capman pressure set point to 5 (mTorr).
- 6) Wait for turbo speed to slow and pressure to stabilize (this will take several minutes).
- 7) Select the Deposition screen. Turn on DC power supply output (see Figure 5).
- 8) Set power supply ramp rate (typically 10-20 watts per second).
- 9) Set power supply output set point to desired power.
- 10) If the voltage reads zero even though the power supply indicates current, the source or cable is short-circuited. Switch off the power supply and take the proper corrective connecting measures (see Troubleshooting section in KJLC TORUS[®] manual). Once the short is repaired, repeat steps 2-9. A voltage reading of 600-1000 volts with no current could indicate several problems. Turn off the power supply and follow the procedures outlined in the Troubleshooting section of the KJLC TORUS[®] manual.

Kurt J. Lesker 0.00.05.23 Closed/U Version 4.33324		Exit Logout KJLC Super User	ABORT
Vacuum Depositon	Get Confee Header Motor Header Con Output Power LL Presse OFF Sales Setpoint	к.u.с. 579 на Gas Flow игст 57 0 0001 игст 57 0 0001	Recipe Database
Source Shafer 3	OFF Subshate Hoster Auto Store Subshate Hoster Temp Servicet PC CAP SP Subshate Hoster Ramp Fore D Subshate Hoster Ramp Fore D mTom	Ramp Rate Setting	Run Recipe Start PC Pump
Source Stutter 1 Source Switches	Power Power Steply Separat Units Ramp Steply Power Power Steply 1 OFF Viets Viets OFF OF Power Steply 1 OFF	ll wer DC V Bias V Wats Vots Amps 00000 00000 00000	Stat PC Verit
Source Configuration	Power Supply 2 OFF O Wats O OFF Power Supply 3 OFF O Wats O OFF 0000 000		
Material Target Cultis Sourcet Kwites Al 10 4.576-2 Sourcet Kwites Al 20 2.656-1 Sourcet Kwites Al 30 2.976-2	Power Supply 4 OFF 0 Watts 0 OFF 0000 00		
Source4 KWHs 502 40 25984	Power Supply 5 OFF 0 Water 0 OFF 0000 00		
Cpenation System	Sputter Target KWH Counter 00E+2		Recording Start

FIGURE 5

DC SPUTTERED PROCESS EXAMPLE

frmR	lecipe	Items				
Seq	Туре	Equipment	EquipmentItem	EquipmentItemOperati on	Equipment/T est Value	GRST
1	-	Recipe	Set Abort Recipe	Abort Process		
2	-	Gauge	MKS979 WRG Pressure	Check Value <= n.nn	.000005	AT
3	-	Valve	PC High Vac Throttle	Turn_On/Open/ Opening		
4	-	Valve	PC High Vac Throttle Opened	Check_On/Open/ Opening		AT
5	-	MFC	MFC1 Mode	Set Value = n.nn	4	
6	-	Valve	Gas Injection	Turn_On/Open/ Opening		
7	-	Gauge	Capman Pressure SP	Set Value = n.nn	5	
8	-	Gauge	Capman Pressure	Check Pressure > n.nn	4.5	AT
9	-	Motors	Platen Motor Jog Velocity SP	Set Value = n.nn	20	
10	-	Motors	Platen Motor Go Continuous +	Turn_On/Open/ Opening		
11	-	Motors	Platen Motor Velocity	Check Value > n.nn	19.9	AT
12	-	Power Supply	Power Supply 2	Turn_On/Open/ Opening		
13	-	Power Supply	Power Supply2 Ramp Rate	Set Value = n.nn	10	
14	-	Power Supply	Power Supply2 Output Setpoint	Set Value = n.nn	200	
15	-	Power Supply	Power Supply2 Output Power	Check Value > n.nn	190	AT
16	-	Gauge	Capman Pressure SP	Set Value = n.nn	2.5	
17	-	Gauge	Capman Pressure	Check Pressure <= n.nn	2.7	AT
18	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	60	
19	-	Shutter	Source Shutter 2	Turn_On/Open/ Opening		
20	-	Shutter	Substrate Shutter	Turn_On/Open/ Opening		
21	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	2000	
22	-	Shutter	Substrate Shutter	Turn_Off/Closed/		

	recipe	items				
Seq	Туре	Equipment	EquipmentItem	EquipmentItemOperati on	Equipment/T est Value	GRST
				Closing		
23	-	Shutter	Source Shutter 2	Turn_Off/Closed/ Closing		
24	-	Power Supply	Power Supply2 Ramp Rate	Set Value = n.nn	10	
25	-	Power Supply	Power Supply2 Output Setpoint	Set Value = n.nn	0	
26	-	Power Supply	Power Supply2 Output Power	Check Value <= n.nn	5	AT
27	-	Power Supply	Power Supply 2	Turn_Off/Closed/ Closing		
28	-	Motors	Platen Motor Go Continuous +	Turn_Off/Closed/ Closing		
29	-	Gauge	Capman Pressure SP	Set Value = n.nn	0	
30	-	Recipe	Dwell	4 Seconds		
31	-	MFC	MFC1 Mode	Set Value = n.nn	0	
32	-	Valve	Gas Injection	Turn_Off/Closed/ Closing		
33	-	Valve	PC High Vac Throttle	Turn_Off/Closed/ Closing		
34	-	Valve	PC High Vac Valve Opened	Check_On/Open/ Opening		AT

frmRecipeItems

Step 1: Always the first step in a recipe, sets which Abort Recipe should be run in the event a check step that has an AT (Abort on Time) fails.

- Step 2:Waiting for a desired base pressure before deposition will begin. In this case5x10-6 Torr.
- **Steps 3-4:** Sets high vacuum valve to throttle position.
- **Steps 5-8:** Set-up process gas to a pressure required to strike a plasma.
- **Steps 9-11:** Start-up substrate rotation.
- **Steps 12-15:** Start running sputter source.
- **Steps 16-17:** Reduce gas pressure to required process setting (if necessary).
- **Steps 18-23:** Pre-sputter and film deposition.
- Steps 24-27: Shut down sputter source power supply.
- **Steps 28-32:** Stop substrate rotation and turn off process gas.
- **Steps 33-34:** Set High vacuum valve throttle off.

- 1) Pump down the vacuum chamber to high vacuum. The choice of base pressures is the decision of the user and determined by acceptable impurity levels.
- Select the Vacuum screen. Set high vacuum valve to throttle position (see Figure 4).
- 3) Select the Gas screen. Open source gas valve or gas injection valve (depending on system configuration see Figure 6).
- 4) Set MFC1 mode to 4.
- 5) Set Capman pressure set point to 10 (mTorr).
- 6) Wait for chamber pressure to stabilize.
- 7) Select the Deposition screen. Turn on RF power supply output see Figure 5).
- 8) Set power supply ramp rate (typically 10-20 watts per second).
- 9) Set power supply forward power set point to desired power.
- 10) Check for the presence of a plasma; if there is no plasma, raise the pressure to 50mTorr of argon in the process chamber. If still no plasma, briefly go to "manual" tuning on the matching network and return to "auto" tuning. If there still is no plasma, briefly open the source shutter. Another method is to fire up another source in the chamber (if available) which will help ignite the plasma.

If the sputtering source is being powered through a cable connected from the matching network, monitor the temperature of this cable and the connectors for excessive heating. Excessive heating can be caused by low impedance at the sputtering source. This results in high current loads through this power transmission cable. Please contact a Kurt J. Lesker Company Applications Engineer for further discussion if cable temperatures exceed 80°C.

11) When a plasma has been established, reduce the gas pressure to the required setting.

FIGURE 6

RF Sputtered Process Example

frmR	lecipel	tems				1
Seq	Туре	Equipment	EquipmentItem	EquipmentItemOpera tion	Equipment/T est Value	GRST
1	-	Recipe	Set Abort Recipe	Abort Process		
2	-	Valve	PC High Vac Throttle	Turn_On/Open/ Opening		
3	-	Valve	PC High Vac Throttle Opened	Check_On/Open/ Opening		AT
4	-	MFC	MFC1 Mode	Set Value = n.nn	4	
5	-	Valve	Gas Injection	Turn_On/Open/ Opening		
6	-	Gauge	Capman Pressure SP	Set Value = n.nn	12	
7	-	Gauge	Capman Pressure	Check Pressure > n.nn	11.5	AT
8	-	Motors	Platen Motor Jog Velocity SP	Set Value = n.nn	20	
9	-	Motors	Platen Motor Go Continuous +	Turn_On/Open/ Opening		
10	-	Motors	Platen Motor Velocity	Check Value > n.nn	19	AT
11	-	Power Supply	Power Supply 3	Turn_On/Open/ Opening		
12	-	Power Supply	Power Supply3 Output Setpoint	Set Value = n.nn	100	R
13	-	Shutter	Source Shutter 3	Turn_On/Open/ Opening		
14	-	Power Supply	Power Supply3 DC Bias	Check Value > n.nn	50	AT
15	-	Recipe	Dwell	1 Second		
16	-	Shutter	Source Shutter 3	Turn_Off/Closed/ Closing		
17	-	Gauge	Capman Pressure SP	Set Value = n.nn	2.5	
18	-	Gauge	Capman Pressure	Check Pressure <= n.nn	3	AT
19	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	10	
20	-	Shutter	Source Shutter 3	Turn_On/Open/ Opening		
21	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	2000	

frmR	ecipel	tems				
Seq	Туре	Equipment	EquipmentItem	EquipmentItemOpera tion	Equipment/T est Value	GRST
22	-	Shutter	Source Shutter 3	Turn_Off/Closed/ Closing		
23	-	Power Supply	Power Supply3 Output Setpoint	Set Value = n.nn	0	R
24	-	Power Supply	Power Supply3 Fwd Power	Check Value <= n.nn	5	GT
25	-	Power Supply	Power Supply 3	Turn_Off/Closed/ Closing		
26	-	Motors	Platen Motor Go Continuous +	Turn_Off/Closed/ Closing		
27	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	5	
28	-	Gauge	Capman Pressure SP	Set Value = n.nn	0	
29	-	Recipe	Dwell	5 Seconds		
30	-	MFC	MFC1 Mode	Set Value = n.nn	0	
31	-	Valve	Gas Injection	Turn_Off/Closed/ Closing		
32	-	Valve	PC High Vac Throttle	Turn_Off/Closed/ Closing		
33	-	Valve	PC High Vac Valve Opened	Check_On/Open/ Opening		AT

 $\overset{@}{ ext{ }}$ The above example is an RF sputter deposition. The main differences to a DC sputter recipe are:

- The gas pressure will normally need to be higher when igniting the plasma. •
- When checking for the presence of a plasma, check for a voltage greater • than 50 (see step 14).

Before working on any sputter source ensure that all electrical power is removed from the power supply/generator.

TARGET CHANGING

Installing/changing targets:

- 1) Turn off sputter source power supply. Turn off power supply main distribution panel circuit breaker.
- 2) Switch to the deposition screen, open the source shutter.
- 3) It may sometimes be necessary to remove the shutter blade to make target removal/install easier.
- 4) Loosen the 3 screws supporting the dark space shield and remove the shield (see Figure 7).
- 5) For a 2" source, loosen the 4 screws of the target hold-down ring (see Figure 8). For a 3 or 4" source, remove the 4 screws and remove the ring.
- 6) When removing a target of magnetic material, carefully slide the target to one side and pick it up (do not attempt to pry magnetic targets from the cooling well. This may result in permanent damage to the cooling well).
- 7) Place a new target on to the source, ensuring all parts are perfectly clean. If installing a magnetic target, take extra care that fingers or parts of a glove do not get pinched between target and source as the magnets are very powerful.
- 8) Tighten the hold-down ring screws evenly (do not over-tighten screws).
- 9) The dark space shield of the TORUS[®] source has three machined slots, which ensure .080" dark space on top of the 1/8", 3/16", and 1/4" targets. Loosen the three #8 screws and reposition the dark space shield to the correct slot when changing the target (do not over-tighten the 3 screws).
- 10) After installing a target, check shutter operation and clearance between the shutter and sputter source.

Refer to the KJLC TORUS® manual for complete detailed instructions regarding target change.

Loosen 3 screws to remove dark space shield.

FIGURE 7

Loosen target holddown ring screws, twist and remove ring (2" source shown). Remove screws completely on 3" or larger sources.

FIGURE 8
CLEANING AND MAINTENANCE

A sputter source will require cleaning after a period of time due to material build-up. If left too long, flaking can occur, resulting in arcing and shorts.

- 1) Turn off sputter source power supply.
- 2) Turn off power supply main distribution panel circuit breaker.
- 3) Switch to the deposition screen; open the source shutter.
- 4) Loosen the 3 screws supporting the dark space shield and remove the shield.
- 5) Remove the screws of the target hold-down ring and remove the ring.
- 6) Clean the dark space shield and hold-down ring (The best method for removing deposited material is with bead blasting).

E-BEAM SOURCE SETUP AND OPERATION

The electron-beam (e-beam) source high deposition rates and large evaporant capacity make it convenient for production-scale coating machines. Solid evaporants such as powder, granules, lumps, or shaped plugs are placed in the source's copper hearth or in a hearth-liner. A high electron flux generated by a hot filament placed below the source is extracted and electrostatically and magnetically bent/focused on the top of the evaporant. The electron beam's energy raises the evaporant's surface temperature. Often the beam is rastered to increase the evaporation area. Since the evaporation area is surrounded by a cooler (often solid) evaporant, unlike other thermal sources, the e-beam source's vapor plume is largely uncontaminated by crucible material.

Production scale e-beam sources are usually single pocket (one hearth). Multipocket sources (4 or 6 hearths) are available for R & D applications. A cover plate obscures the pockets "not-in-use" to prevent vapor cross-talk. Multipocket sources are particularly convenient when depositing multilayer films on a single substrate.

Evaporants often "spit" and must be heated in a series of ramp/soak steps in order to reach evaporation temperature. The melt presents a high-temperature source that thermally radiates the substrate.

SAFETY

A DANGER

DO NOT operate or service the E-Beam source or power supply before reading and understanding the E-Beam operation manuals.

🛕 DANGER

After power has been disconnected, wait for at least 3 minutes before starting work on the power supply to allow the capacitors to discharge themselves. Also use the grounding rod to discharge the capacitors and high voltage feed thru before coming in contact with them.

FIGURE 1

- 1) Visually inspect equipment daily for water leaks and equipment condition.
- 2) Remove excess deposition from around the crucible and gun.

Excessive flaking around the crucible or heavy coatings of deposition material on top of the e-gun, can cause the gun to arc, affect the beam or operate improperly.

Setup

The shutter limits or speed of open/close may need to be adjusted over time.

SHUTTER SPEED ADJUSTMENT

- 1) Start by closing the speed adjustment valves (clockwise). See Fig below.
- 2) Toggle the shutter to open (the shutter should not open yet).
- 3) Check which airline has pressure on it and adjust the other speed valve counterclockwise slowly until the shutter opens.
- 4) Toggle the shutter to close (the shutter should not close yet).
- 5) Adjust the other speed control valve counter-clockwise slowly until the shutter closes.
- 6) Recheck the shutter open and close and adjust the speed valves so that the shutter operates smoothly.

SHUTTER LIMIT ADJUSTMENT

E-BEAM SHUTTER

Use the two adjustable limits shown above to set the open and closed position of the shutter.

SYSTEM EQUIPMENT REQUIREMENTS

Each E-Beam system needs the following interlocks to be satisfied in order to work:

- Water flow sensors
- Vacuum monitor
- External E-Beam cover switches: Drawer door, power F/T cover switch and power cable cover interlocks to be closed

WATER FLOW SENSORS

Located on the water return line of the system's water manifold.

WATER MANIFOLD

Depending on the type of E-Beam system installed there may be 1 water flow switch or two flow switches in series, as shown above. One flow switch is for the magnet cooling; the second switch is for the crucible cooling.

The valve needs to be in the OPEN position (on both supply/return manifolds) for the switch to register flow. The flow switch is normally closed.

When the water supply and return valves are open, the water flow switch should be satisfied. To ensure, the flow switch on the CWare Cooling screen will change from gray to green when satisfied.

FIGURE 2

If the water supply and return valves are fully open and the flow switch is not shown as made on CWare, check that the water pressure and flow rate meet specifications. If the utilities are within spec, call the KJLC Service Department for assistance.

VACUUM MONITOR

E-Beam systems are hard-wire interlocked to the VAC switch. When the system is roughed below ATM, the VAC (Vacuum Switch) turns green and indicates PC is under vacuum. The KJLC software interlock for minimum operation pressure is 5x10-4Torr; although the recommended optimum pressure is 4 x 10-5 Torr or better.

EXTERNAL COVER SWITCHES

Depending on the type of E-Beam installed in the system, there are external cover switches that will need to be made. Please refer to the manufacturer's user manual for specific location of these switches. There are two types of external switches for two common models, the 265 and KL-6.

- Telemark cover switches
- KL-6 cover switches

FIGURE 4

The 265 control panel LED will indicate if the cover switch is not made. When the Drawer door is made, CWare will display EB Door Closed (Figure 5).

KL-6 COVER SWITCHES

OPERATION

Manual running of E-Beam through CWare

On initial start-up of a system, follow the Initial Start-Up given in E-Beam Operator Manual, E-Beam Evaporator section, pages 39-42.

Before running E-Beam:

- Do not change High Voltage (HV) during process. If HV is changed, E-Beam limits will need to be reset as done in initial start-up. Failure to reset limits will result in Beam operating outside of crucible and could result in damage of equipment. The high voltage output cable cover must be in place correctly to make the cover switch before the High Voltage can be turned on. If not, the Interlock LED on the front panel will not turn on.
- It is recommended that a crucible not be filled with material by more than 2mm above the crucible edge to prevent Pocket Jamming Error. At least one-third of the crucible volume should remain filled during the process.
- When process starts, user should ensure the E-Beam is centered inside the crucible.
- System must be in Automatic/Remote mode.

KL-6 EXAMPLE

Following is a general example of how to manually run the KL-6 E-Beam through CWare. For this example, the E-Beam system has 4 pockets. Pocket 1 has a carbon crucible loaded with Titanium pellets.

1) Select Crucible 1 by pressing Cru Pos1 button. When Crucible is in position the feedback will turn green (Figure 1).

 Open Sigma SQS242-Monitor software; this will be used to record deposition rate (Start> Programs> Sigma Instruments>SQS242-Monitor) OR with Sigma SQS242-CoDep running read rate by pull down (View>Sensor Readings).

 $\overset{@}{ ext{ }}$ Do not run both SQS242-CoDep and SQS242-Monitor programs at the same time.

3) Press the EB Off button and then press the EB On button. Note that the EB HV feedback will appear green; HV is now turned on.

BB On cannot be active unless power setpoint is 0% (Figure 2).

^{eff} EB Power Setpoint is in percentage. The max amperage for the KL-6 is generally set to 500mA; therefore, 10% setpoint power is 50mA.

- 4) Increment the power setpoint (Emission Current) slowly, making sure the beam is centered in the pocket. Once the material has started its melt, open the E-Beam shutter by turning the E-beam shutter button on. Once the material has started to Melt, adjust the Setpoint to obtain the required rate of evaporation.
- 5) Once user has finished deposition, begin ramp down of power. Ramp down power setpoint by inputting a ramp value as seen in Figure 3. Next, the user will input 0 in the setpoint box.

FIGURE 3

- 6) When ramp down to setpoint has completed, press EB Off button.
- 7) Press EB Off button. <u>NOTE:</u> Only when you press EB Off does the EB HV turn off.

RECIPE CONTROLLED DEPOSITION EXAMPLE WITH SIGMA	(KL-6 E-BEAM)
--	---------------

Seq	Туре	Equipment	EquipmentItem	EquipmentItemOperation	Test Value	GRST
1	-	Recipe	Set Abort Recipe	Abort Process		
2	-	Gauge	MKS979 WRG Pressure	Check Value <= n.nn	.000005	AT
3	-	Supply	Cru Pos 2	Turn_Off/Closed/Closing		
4	-	Supply	Cru Pos 3	Turn_Off/Closed/Closing		
5	-	Supply	Cru Pos 4	Turn_Off/Closed/Closing		
6	-	Supply	Cru Pos 1	Turn_On/Open/Opening		
7	-	Recipe	Dwell	HH:MM:SS)	15	
8	-	Supply	Crucible In Position	Check_On/Open/Opening		AT
9	-	Motors	SP	Set Value = n.nn	20	
10	-	Motors	Platen Motor On	Turn_On/Open/Opening		
11	-	Motors	Continuous +	Turn_On/Open/Opening		
12	-	Supply	Setpoint	Set Value = n.nn	0	
13	-	Supply	EB Off	Turn_Off/Closed/Closing		
14	-	Supply	EB On	Turn_On/Open/Opening		
15	-	Sigma	Mapping 1	Set Value = n.nn	16	
16	-	Sigma	Mapping 1	Set Value = n.nn	14	
17	-	Sigma	Mapping 2	Set Value = n.nn	16	
18	-	Sigma	Sigma Launch 242	Turn_On/Open/Opening		
19	-	Recipe	Dwell	5 Seconds		
20	-	Sigma	Sigma Control Request	Set Value = n.nn	0	
21	-	Recipe	Dwell	3 Seconds		
22	-	Sigma	Sigma Control Request	Set Value = n.nn	Titanium	
23	-	Recipe	Dwell	3 Seconds		
24	-	Sigma	Sigma Stop Process	Turn_Off/Closed/Closing		
25	-	Recipe	Dwell	2 Seconds		
26	-	Sigma	Sigma Start Process	Turn_On/Open/Opening		
27	-	Sigma	Sigma Process Stopped	Check_On/Open/Opening		AT
28	-	Supply	Setpoint	Set Value = n.nn	0	
29	-	Supply	EB On	Turn_Off/Closed/Closing		
30	-	Supply	EB Off	Turn_On/Open/Opening		
31	-	Motors	Platen Motor On	Turn_Off/Closed/Closing		
32	-	Motors	Continuous +	Turn_Off/Closed/Closing		

UNDERSTANDING THE KL-6 RECIPE

- **Step 1**: Always the first step in a recipe; sets which Abort Recipe should be run in the event a step that has an AT (Abort on Time) fails.
- **Step 2:** Waiting for a desired base pressure before deposition will run. In this case it is 5x10-6Torr.
- **Steps 3-8:** Sets up Crucible for EB (3-6). Checks crucible is in position (8).
- Steps 9-11: Set up substrate rotation.
- Steps 12-14: Sets EB setpoint to zero and turns on EB HV.
- **Steps 15-27:** Sets up Shutter mapping, launches Sigma program and requests that Sigma load a process (18-22).
- Steps 28-30: Zero Setpoint and turn off EB HV.
- Steps 31-32: Turn off motor.

265 MODEL EXAMPLE

Following is an example of how to manually run a 265 model E-Beam through CWare. In this example, the E-Beam system has 6 pockets. Pocket one has a carbon crucible loaded with Titanium pellets.

1) First Select Crucible 1 by pressing Cru Pos1 button. When Crucible is in position, Active or In Posn will turn green (Figure 1).

Shutte	ers					Hea	iter Co	ntrol		PC 	Pressu MKS-To 1.00E-	re — ·	LL Pre	ssure -	Ga	s Flow	
		E	3								PC CAP S	ŝP					
		Ebeam S	Shutter			Pow	er EB Off	Power Supply EB On	Setpoint	Units	Ramp Rate U/s	Fwd Power W	Rfl Power W	DC Bias V	Walts	Volts	Amps
Crucil Active	Active	Active	Active	Active	Active		ON	OFF	0.0	%	0						
ON Cru Pos 1	OFF Cru Pos 2	OFF Cru Pos 3	OFF Cru Pos 4	OFF Cru Pos 5	OFF Cru Pos 6			EB HV On	OFF	EB HV O'f	ON						
Sourc	e Swit	ches															

FIGURE 1

 Open Sigma SQS242-Monitor software; this will be used to record deposition rate (Start> Programs> Sigma Instruments>SQS242-Monitor) OR with Sigma SQS242-CoDep running read rate by pull down (View>Sensor Readings).

 $\overset{@}{ ext{ }}$ Do not run both SQS242-CoDep and SQS242-Monitor programs at the same time.

- 3) Press (deactivate) the EB Off and EB HV Off buttons
- 4) Press (activate) the EB On and EB HV On buttons (Figure 2).

Shutt	ers					-Heater Co	ntrol		- PC	Pressu MKS To 1.00E	re orr 5	LL Pre	ssure	Ga	s Flow	
		Source	3							PC CAP :	SP					
Cruci	ble Ind	Ebeam '	Shutter	Active	Active	EB Off OFF	Power Supply EB On	Setpoint 0.0	Units %	Ramp Rate U/s	Fwd Power W	Fifi Power W	DC Bias V	Watts	Volts	Amps
ON Cru Pos 1	OFF Cru Pos 2	OFF Cru Pos 3	OFF Cru Pos 4	OFF Cru Pos 5	OFF Cru Pos 6		EB HV O	n ON	EB HV ON	OFF						
Sour	ce Swit	ches -														

EB Power Setpoint is displayed in percentage. The max amperage for the 265 model E-Beam is generally set to 750mA; therefore, 10% setpoint power is 75mA.

- 5) Increment the power setpoint (Emission Current) slowly, making sure the beam is centered in the pocket. Open the E-Beam shutter once material begins to melt. Adjust the power setpoint to obtain the required rate of evaporation.
- 6) When deposition is complete, ramp back down EB power setpoint.
- 7) When setpoint is zero, press EB HV On button and EB On button.
- 8) Press EB Off button and EB HV Off button. (**NOTE:** You must press EB HV Off to turn EB HV Off).

RECIPE CONTROLLED DEPOSITION EXAMPLE WITH SIGMA (265 MODEL E-BEAM)

t	Type	Equipment	EquipmentItem	EquipmentItemOperation	Equipment/Test Value	GRST
1	-	Recipe	Set Abort Recipe	Abort Process		
2	_	Shutter	Ebeam Shutter	Turn Off/Closed/Closing		
3	_	Shutter	Source Shutter 1	Turn Off/Closed/Closing		
4	_	Motors	Platen Motor On	Turn On/Open/Opening		
5	_	Motors	Platen Motor Go Home	Turn On/Open/Opening		
6	_	Motors	Referenced	Check On/Open/Opening		AT
7	_	Motors	SP	Set Value = n.nn	1	
8	_	Motors	Station	Turn On/Open/Opening		
9	-	Motors	Platen Motor Position	Check Value <= n.nn	1	AT
10	-	Motors	Planet Motor On	Turn_On/Open/Opening		
11	_	Motors	Velocity SP	Set Value = n.nn	10	
12	-	Motors	Continuous +	Turn_On/Open/Opening		
13	-	Motors	Planet Motor Moving	Check_On/Open/Opening		AT
14	-	Supply	Cru Pos 2	Turn_Off/Closed/Closing		
15	_		Cru Pos 3	Turn Off/Closed/Closing		
16	-	Supply	Cru Pos 4	Turn_Off/Closed/Closing		
17	-	Supply	Cru Pos 5	Turn_Off/Closed/Closing		
18	-	Supply	Cru Pos 6	Turn_Off/Closed/Closing		
19	-	Supply	Cru Pos 1	Turn_On/Open/Opening		
20	-	Supply	Crucible In Position 1	Check_On/Open/Opening		AT
21	-	Supply	Setpoint	Set Value = n.nn	0	
22	-	Supply	EB HV Off	Turn_Off/Closed/Closing		
23	-	Supply	EB HV On	Turn_On/Open/Opening		
24	-	Supply	EB Off	Turn_Off/Closed/Closing		
25	-	Supply	EB On	Turn_On/Open/Opening		
26	-	Sigma	Mapping 1	Set Value = n.nn	16	
27	-	Sigma	Mapping 1	Set Value = n.nn	1	
28	-	Sigma	Sigma Control Request	Set Value = n.nn	Titanium test	
29	-	Sigma	Sigma Process Name	Check Value <= n.nn	Titanium test	AT
30	-	Sigma	Sigma Load Process	Turn_On/Open/Opening		
31	-	Sigma	Sigma Start Process	Turn_On/Open/Opening		
32	-	Sigma	Sigma In Process	Check_On/Open/Opening		AT
33	-	Sigma	Sigma In Process	Check_Off/Closed/Closing		GT
34	-	Supply	Rate	Set Value = n.nn	100	
35	-	Supply	Setpoint	Set Value = n.nn	0	
36	-	Supply	EB On	Turn_Off/Closed/Closing		
37	-	Supply	EB Off	Turn_On/Open/Opening		
38	-	Supply	EB HV On	Turn_Off/Closed/Closing		
39	-	Supply	EB HV Off	Turn_On/Open/Opening		
40	-	Motors	Continuous +	Turn_Off/Closed/Closing		
41	-	Motors	Planet Motor On	Turn_Off/Closed/Closing		

UNDERSTANDING THE 265 MODEL RECIPE

- **Step 1:** Always the first step in a recipe, sets which Abort Recipe should be run in the event a step that has an AT (Abort on Time) fails.
- **Steps 2-3:** Close both shutters. To ensure that no deposition reaches the substrate before material, conditioned and required rate obtained.
- **Steps 4-13:** Sets Platen and Planet position. Sets angle of substrate and rotation.
- **Steps 14-25:** Turns off all other crucibles. Step 19 turns on Crucible 1, which is the pocket needed for this deposition (14-19). Checks Crucible is in Position (20). Sets Setpoint to zero (21). Turns on EB HV (22-25).
- Steps 26-33: Steps 26-27 set up the Sigma shutter mapping. Steps 28-30 request Sigma to load a process named Titanium Test and verifies if the correct process has been loaded. Steps 31-33 run process called Titanium Test. (Note: For the Go To Step (33) the time needs to be set longer than it takes for the sigma process file to finish).
- **Steps 34-39:** Zero Setpoint then turn off EB HV and EB.
- **Steps 40-41:** Turns off motors.

ABORT IF TIMEOUT AND GOTO SETUP

When creating a recipe you can set an Abort if Timeout or Goto from the GRST column. This can be created by clicking inside the cell on the GRST column of the step you want to add the Abort if TimeOut (AT) or GoTo (GT). The following box will appear:

📧 Recipe Items De	etail		
TimeOut for Wait	60		
TimeOutMessage	Crucible Not in Position		
Goto Sequence No if Timeout	999 (999 = Abort if Tim	eout)	
SkipRecipeltem	Г	Close	
Ramp Units/sec			
Notes (not for display	/		
	1		

TimeOut for Wait: User can limit the number of seconds the recipe will check at this step.

TimeOutMessage: User information message.

Goto Sequence No if Timeout: This is the step number the recipe will go to next when TimeOut for Wait hits zero. If the user inputs 999 the abort recipe last set (usually set at step 1) will run when TimeOut for Wait hits zero.

SkipRecipeItem: If checked, the step will be ignored when recipe is running.

Ramp Units/sec: Not used

Notes (not for display): Not used.

ABORT IF TIMEOUT EXAMPLE

SEQ	Equipment	EquipmentItem	EquipmentItemOperation	Equipment Test Value	GRST
1	Recipe	Set Abort Recipe	Abort Process		
2	Power Supply	Cru Pos 2	Turn_Off/Closed/Closing		
3	Power Supply	Cru Pos 3	Turn_Off/Closed/Closing		
4	Power Supply	Cru Pos 4	Turn_Off/Closed/Closing		
5	Power Supply	Cru Pos 1	Turn_On/Open/Opening		
6	Inputs	Crucible In Position	Check_On/Open/Opening		АТ

📧 Recipe Items De	etail	x
TimeOut for Wait	80	
TimeOutMessage	Crucible Not in Position	
Goto Sequence No if Timeout	i 999 (999 = Abort if Timeout)	
SkipRecipeltem	Close	
Ramp Units/sec		
Notes (not for display	У	

ABORT IF TIMEOUT SET-UP

- **Step 1:** Set the Abort recipe, Abort Process.
- **Steps 2-4:** Turn off crucible positions 2, 3 and 4.
- **Step 5:** Turn on crucible position 1.
- **Step 6:** Check step. Recipe will verify that Crucible In Position is on for 60 sec. If Crucible In Position signal fails to be on when checked (feedback that says pocket is in position) then it will run the Abort Process Recipe as 999 is inputted in GotoSequence.

MATERIAL REPLENISHING

DANGER DO NOT operate or service the E-Beam before reading and understanding the E-Beam operation manual. Failure to comply may result in danger to user, damage of equipment and void the warranty.

- 1) Follow the E-Beam shutdown procedure as outlined in the manufacturer's operation manual.
- 2) Vent the vacuum chamber.
- 3) Ground all high voltage F/T with the discharge rod.
- 4) Replenish crucible. Crucible should generally not be filled with material by more than 2mm above the crucible edge. At least one-third of the crucible volume should remain filled during the process.

CLEANING AND MAINTENANCE

DANGER DO NOT operate or service the E-Beam before reading and understanding the E-Beam operation manual. Failure to comply may result in danger to user, damage of equipment and void the warranty.

- 1) Follow the E-Beam shutdown procedure as outlined in the manufacturer's operation manual.
- 2) See manufacturer's operation manual for general maintenance of individual components.

GLOSSARY

ABBREVIATION	DESCRIPTION
EB	Electron Beam
Cru Pos	Crucible Position
HV	High Voltage
EB HV	E-Beam High Voltage
F/T	Feedthrough

LTE/HTE FURNACE OPERATION

A DANGER

DO NOT operate the LTE/HTE Furnace before reading and understanding all pertinent component manuals.

- 1) Inspect all electrical connections between the LTE/HTE Furnace power supply and LTE/HTE Furnace source and all in-vacuum electrical and vacuum connections to the LTE/HTE Furnace source.
- 2) Place a loaded crucible into the pocket of the source, and ensure that the cover is installed properly into the source base. Ensure that the loaded crucible is centralized in the source cover.

Some low temperature evaporation materials are known carcinogens. Refer to all MSDS sheets for safe handling and appropriate breathing equipment and ventilation.

- 3) Check to see that LTE/HTE Furnace source is positioned correctly to deposit on the substrate.
- 4) Evacuate chamber to < 5.0e-06 Torr.

 $\stackrel{@}{=}$ Although the LTE/HTE Furnace will work under any high vacuum condition, it is recommended to start at a pressure of < 5.0e-06 Torr.

- 5) Precondition the material in the crucible by raising the temperature of the source to a temperature or power level just below the appearance of rate on the deposition monitor.
- 6) Let source stabilize at precondition temperature for at least 5 minutes.
- 7) Heat source to desired deposition rate by raising the temperature or power level on the supply.
- 8) Open the substrate / source shutter and 0 the thickness monitor.

 $\overset{@}{ heta}$ Refer to film thickness control / monitor's operating manual for detailed instructions.

- 9) When the desired thickness is achieved on the monitor, close the shutter and reduce heat in the source.
- 10) Allow source to cool prior to venting system.

Use caution when removing the substrate from the chamber, it

DANGER

THERMAL SOURCE SETUP AND OPERATION

EVAPORATION is the process whereby atoms or molecules in a liquid state (or solid state if the substance sublimes) gain sufficient energy to enter the gaseous state. The thermal motion of a molecule must be sufficient to overcome the surface tension of the liquid in order for it to evaporate; that is, its kinetic energy must exceed the work function of cohesion at the surface. Evaporation therefore proceeds more quickly at higher temperature and in liquids with lower surface tension.

SAFETY

A DANGER

DO NOT operate or service the Thermal Source(s) before reading and understanding the operation manual.

- 1) Visually inspect equipment daily for water leaks, equipment condition.
- 2) Thermal equipment operates with a low voltage, high current power supply. Make certain that proper LOTO procedures are followed prior to servicing.

🛕 DANGER

Use caution when removing the substrate from the chamber, it

may be hot.

Setup

Over time you may need to adjust the shutter limits or speed of open/close.

SHUTTER SPEED ADJUSTMENT

- 1) Start by closing the speed adjustment valves (clockwise). See Fig below.
- 2) Now toggle the shutter to open. (The shutter should not open yet)
- 3) Check which airline has pressure on it and adjust the other speed valve counterclockwise slowly until the shutter opens.
- 4) Now toggle the shutter to close. (The shutter should not close yet)
- 5) Adjust the other speed control valve counter-clockwise slowly until the shutter closes.
- 6) Recheck the shutter open and close and adjust the speed valves so that the shutter operates smoothly.

SHUTTER LIMIT ADJUSTMENT

Using these two adjustable limits shown above, you can set the shuttered position (closed) and open position.

SYSTEM EQUIPMENT REQUIREMENTS

Each Thermal Source(s) system needs the below interlocks to be satisfied in order to work.

- Water Flow Sensors (if equipped)
- Vacuum monitor
- System Pressure requirements

WATER FLOW SENSORS

Usually located on the water return line of the system water manifold (see picture below).

WATER FLOW SENSORS

Depending on the number of Thermal Source(s) the system has, it may or may not be equipped with water flow switches. If equipped, there may be more than one water flow switch installed along with a common flow switch. When the water supply and return valves are open, the water flow switches should be satisfied. This can be confirmed by checking the cooling screen in Cware. The flow switch will change from gray to green when satisfied. The Evap1 Flow Switch, Evap 2 Flow Switch and Evap Common Flow Switch icons are illuminated or green, indicating the flow switches are made.

Kurt J. Lesker	Running Time Open/On	Interlock Activ	ated	Exit	Logout KJLC	ABORT
Version 4.33224	0:00:00:34 Closed/Uff	Interlocks Disabled on (Jonng Screen		Super User	
+ C131011 4.33224	1		1			
Vacuum	Deposition	Cooling	Platen Motion	Sigma	MKS979	
		-		_		
						Recipe Database
	Evap1 Flow Switch			l l		
	Even 2 Elever Contrate					Hun Hecipe
	Evap2 Flow Switch					
			Ebooro Cun			Start PC Pump
			Lbeam oun			
	Evap Common Flow Switch					
		_				Start PC Vent
						Recording Start
			_			
		2 90E-	6			
Operation	System	2.001	×			
]					

WATER FLOW COOLING SWITCH

If the water supply and return valves are fully open and the flow switch is not shown as made on Cware (illuminated green), then check that the utilities water pressure and flow rate meets spec. If the utilities are within spec then call KJLC Service Dept.

VACUUM MONITOR

PRESSURE REQUIREMENTS

Thermal Source systems are hard-wire interlocked to the VAC switch. The KJLC software interlock for minimum operation pressure is 5x10-3Torr, although the recommended optimum pressure is 5x10-5Torr or better.

OPERATION

MANUAL OPERATION

Before running Thermal Source manually thru Cware software:

- Make certain that thermal boats, crucible heaters, wire basket filaments, etc., are securely fastened to thermal feed through with associated hardware before proceeding.
- Make certain that the thermal boats/crucible heaters, wire basket filaments, etc., are not shorted against any deposition shielding or chamber wall before proceeding.
- If using a crucible heater, make certain that the "ends" or open heat shield surrounding the crucible are not shorted. This most likely occurs when affixing the heater to the feed through post when tightening the socket head cap screw.
- Do not change Thermal Source switch position during process. This action is protected by interlocks to prevent such occurrences.
- Make certain the deposition system is at an acceptable vacuum level before attempting deposition for best results.

The following example demonstrates the procedure to manually run the Thermal Source through Cware:

- 1) With the "Evap" button "Off" or not depressed, change the Evap Set Point value and Ramp Rate U/s value to "0", if not already in that state.
- 2) Select which source you would like to run (either Source SW1 or Source SW2) by depressing the appropriate button. This button will turn green when "On" or energized.
- 3) Depress the Evap button to energize the power supply. This button will turn green when "On" or energized.
- 4) Once energized, the operator can increase power in two manners (with and without a ramp rate):
 - a) Ramp Rate Operation: The operator must enter a value from (0~100) in the Ramp Rate U/s text box. This box interprets the value entered in "Units per Second". After performing this function, the operator then will enter a value from (0~100) into the % Power text box. This value is interpreted as 0 to 100 % available power. This order of steps will increase the output power to the thermal sources utilizing the ramp rate entered until the maximum % power has been reached. Once this maximum has been reached, the Ramp Rate text box will revert to a "0". To reduce power utilizing the ramp rate, perform the function in the same order. Enter a Ramp Rate value first, then a % power.

If the % Power is entered first, then the Ramp Rate, the software will ignore the Ramp Rate and proceed directly to the % Power entered.

 b) No Ramp Rate Operation: The operator can enter a value (0~100) in the % Power text box. Performing this function will allow the output Power to immediately increase to the percentage of Power entered without a Ramp Rate.

Kurt J. Lesker Company Version 4.33224	n Interlock A Iff Interlocks Disabled	on Config Screen	Logout KJLC Super User	ABORT
Vacuum Deposition	Cooling	Platen Motion Sigma	МК5979	
Shutters Xtal4 0.0 Open (Substrate) 0000 Closed	EB/Evap Setpoint EB On OFF	Sigma Heater Control Proc. State Process Stopped		Recipe Database
0.0 0.0 Rate (A/s) 0.0 0.000 0.000 Thick (KA) 0.000 Xtaf1 Xtaf2 Xtaf2 Xtaf2		Sigma In Sigma Deposit Shutter		Run Recipe
(EVap1) (Evap2) (EBeam)	Amps Evap 0N 4.0 % .5 0.000 Power	Phase Delay OK DK		Start PC Pump
Evap Shutter Ebeam Shutter	Power Supply Setpoint Units	Ramp Fwd Hill Rate Power Power DC U/s W W BiasV Watts	Volts Amps	
1 2 3 4 Ti Empty Empty Empty				
Evap Source Switches				
Source Source SW1 SW2 Platen Control				
Velocity Velocity Selpoint (IPM) Text3 0.0				Recording Start
Operation System	2.90	E-6		

The picture above depicts Source SW1 energized, the Evap Power supply energized via the "On" button, a ramp rate of .5U/s entered, and the Setpoint box ramping up.

RECIPE CONTROLLED OPERATION

RECIPE CONTROLLED DEPOSITION WITHOUT SIGMA

Seq	Туре	Equipment	EquipmentItem	EquipmentItemOperation	Equipment/Test Value	GRS
1	-	Recipe	Set Abort Recipe	Abort Default		
2	-	Gauge	MKS979 WRG Pressure	Check Value <= n.nn	.00005	AT
3	-	Source	Source SW2	Turn_Off/Closed/Closing		
4	-	Source	Source SW1	Turn_On/Open/Opening		
5	-	Shutter	Evap Shutter	Turn_Off/Closed/Closing		
6	-	Shutter	Substrate Shutter	Turn_Off/Closed/Closing		
7	-	Motors	Platen Motor Jog Velocity SP	Set Value = n.nn	20	
8	-	Motors	Platen Motor On	Turn_On/Open/Opening		
9	-	Motors	Platen Motor Go Continuous +	Turn_On/Open/Opening		
10	-	Power Supply	Power Supply1 Ramp Rate	Set Value = n.nn	0	
11	-	Power Supply	Power Supply1 Output Setpoint	Set Value = n.nn	0	
12	-	Power Supply	Power Supply 1	Turn_On/Open/Opening		
13	-	Power Supply	Power Supply1 Ramp Rate	Set Value = n.nn	.5	
14	-	Power Supply	Power Supply1 Output Setpoint	Set Value = n.nn	20	
15	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	60	
16	-	Power Supply	Power Supply1 Output Setpoint	Check Value > n.nn	19.5	AT
17	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	30	
18	-	Shutter	Evap Shutter	Turn_On/Open/Opening		
19	-	Shutter	Substrate Shutter	Turn_On/Open/Opening		
20	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	60	
21	-	Shutter	Substrate	Turn_Off/Closed/Closing		

frmRecipeItems									
Seq	Туре	Equipment	EquipmentItem	EquipmentItemOperation	Equipment/Test Value	GRST			
			Shutter						
22	-	Shutter	Evap Shutter	Turn_Off/Closed/Closing					
23	-	Power Supply	Power Supply1 Ramp Rate	Set Value = n.nn	.5				
24	-	Power Supply	Power Supply1 Output Setpoint	Set Value = n.nn	0				
25	-	Recipe	Dwell	N Seconds (n or HH:MM:SS)	60				
26	-	Power Supply	Power Supply1 Output Setpoint	Check Value <= n.nn	1	AT			
27	-	Power Supply	Power Supply 1	Turn_Off/Closed/Closing					
28	-	Motors	Platen Motor Go Continuous +	Turn_Off/Closed/Closing					

UNDERSTANDING THE CWARE RECIPE

Step 1:	Always the first step in a recipe, sets which Abort Recipe should be run in the event a check step that has an AT (Abort on Time) fails.
Step 2:	Waiting for a desired base pressure before deposition will run. In this case 5x10-5Torr.
Steps 3-6:	Sets up appropriate source switch, closes system shutters.
Steps 7-9:	Set up substrate rotation.
Steps 10-12:	Zero's the Ramp Rate text box and the % Setpoint text box, turns "On" Power Supply.
Steps 13-14:	Sets Ramp Rate text box to .5U/s, and enters a value of 20% in the Setpoint text box.
Steps 15-16:	Sets a dwell time of 60 seconds and checks that the % Setpoint is > (greater than) 19.5 after the dwell time has elapsed.
Steps 17-19:	Additional 30 second Dwell time for material temp to equilibrate and turn "On" or activation of both Evap and Substrate shutters.
Steps 20-22:	Deposition dwell for 60 seconds followed by closing of the Substrate and Evap shutter.
Steps 23-24:	Sets Ramp Rate text box to .5 U/s, and enters a value of 0% in the Setpoint text box.
Steps 25-26:	Sets a dwell time of 60 seconds and checks that the % Setpoint is <= (less than or equal to) 1 after the dwell time has elapsed.
Step 27:	Turns "Off" the Power Supply.
Step 28:	Turn "Off" motor Go Continuous +.

RECIPE CONTROLLED DEPOSITION WITH SIGMA

frmRecipeltems										
Seq	Туре	Equipment	EquipmentItem	EquipmentItemOperation	Equipment/Test Value	GRST				
1	-	Recipe	Set Abort Recipe	Abort Default						
2	-	Gauge	MKS979 WRG Pressure	Check Value <= n.nn	.00005	AT				
3	-	Source	Source SW2	Turn_Off/Closed/Closing						
4	-	Source	Source SW1	Turn_On/Open/Opening						
5	-	Shutter	Evap Shutter	Turn_Off/Closed/Closing						
6	-	Shutter	Substrate Shutter	Turn_Off/Closed/Closing						
7	-	Motors	Platen Motor Jog Velocity SP	Set Value = n.nn	20					
8	-	Motors	Platen Motor On	Turn_On/Open/Opening						
9	-	Motors	Platen Motor Go Continuous +	Turn_On/Open/Opening						
10	-	Power Supply	Power Supply1 Ramp Rate	Set Value = n.nn	0					
11	-	Power Supply	Power Supply1 Output Setpoint	Set Value = n.nn	0					
12	-	Power Supply	Power Supply 1	Turn_On/Open/Opening						
13	-	Sigma	Sigma Launch 242	Turn_On/Open/Opening						
14	-	Sigma	Sigma Shutter Delay Mapping 1	Set Value = n.nn	17					
15	-	Sigma	Sigma Shutter Deposit Mapping 1	Set Value = n.nn	14					
16	-	Sigma	Sigma Control Request	Set Value = n.nn	Ag EVAP 4KW					
17	-	Sigma	Sigma Stop Process	Turn_Off/Closed/Closing						
18	-	Recipe	Dwell	3 Seconds						
19	-	Sigma	Sigma Load Process	Turn_On/Open/Opening						
20	-	Sigma	Sigma Start Process	Turn_On/Open/Opening						
21	-	Sigma	Sigma In Process	Check_On/Open/Opening		AT				
22	-	Sigma	Sigma In Process	Check_Off/Closed/Closing		AT				
23	-	Power Supply	Power Supply1 Ramp Rate	Set Value = n.nn	0					
24	-	Power Supply	Power Supply1 Output Setpoint	Set Value = n.nn	0					
25	-	Power Supply	Power Supply 1	Turn_Off/Closed/Closing						
26	-	Motors	Platen Motor Go Continuous +	Turn_Off/Closed/Closing						

UNDERSTANDING THE SIGMA CONTROLLED CWARE RECIPE

- **Step 1**: Always the first step in a recipe, sets which Abort Recipe should be run in the event a check step that has an AT (Abort on Time) fails.
- **Step 2:** Waiting for a desired base pressure before deposition will run. In this case 5x10-5Torr.
- **Steps 3-6:** Sets up appropriate source switch and closes system shutters.
- **Steps 7-9:** Sets up substrate rotation.
- **Steps 10-12:** Zeroes the Ramp Rate text box and the % Setpoint text box; turns "On" Power Supply.
- **Steps 13-15:** Launches (turns on) Sigma control via KJLC software, and sets both the shutter delay and shutter deposit mapping to the correct values. (This ensures that the correct shutters are actuated via Sigma control).
- Step 16:Sets the value (Sigma Control request) to the appropriate program from
Sigma for which to would like to run. NOTE: This name (Ag EVAP 4KW for
example) must match the process in Sigma exactly!
- **Steps 17-18:** Turns the Stop Process signal "Off" and then dwells for 3 seconds.
- **Steps 19-20:** Loads the Sigma Control request for which to run and Starts the Sigma Process.
- Step 21: Checks that the Sigma Process is running or "In Process"
- Step 22: Checks that the Sigma Process has 'Stopped"
- **Steps 23-24:** Sets Ramp Rate text box to 0 U/s, and enters a value of 0% in the Setpoint text box.
- **Step 25:** Turns "Off" the Power Supply.
- **Step 26:** Turn "Off" motor Go Continuous +.

ABORT IF TIMEOUT AND GOTO SETUP

When creating a recipe, the Abort if Timeout or Goto from the GRST column can be set. Click inside the cell on the GRST column of the step you want to add the Abort if TimeOut (AT) or Goto (GT). The following box will appear:

N	ew	мL	∢ ‼Siαm	a Reci	oe Therma	l Src∨ →	H	Sho	IIA w	Sub Rec	cipe 🔄	De	lete	Export All	Recipes	s to XL
		== R	ecipe Items D	Detail												
Include in V		TimeC	Out for Wait	15	5						Update V		Re	order Items	Copy F	Recipe
	Seq Ti)utMessage	, Sigma Proces	Process not started				quipment	ltemOp	eration		Ed	quipment/Test Va	alue	GRST
	1	•	-	[-				efault								
	2	Goto	Sequence No if	999 (99	9 (999 = Abort if Timeout)				′alue <= n.nn					AT		
	3	Timeout						/Closed/Closing								
	4	SkipR	SkipRecipeltem 🗖		Close				/Open/Opening /Closed/Closing /Closed/Closing							
	5	5 - Ramp Units/sec														
	6	Notes	(not for display													
	7	-	(nor tor stopis)						ie = n.nn						20	
	8								/Open/Op	pening						
	9	· · · · · · · · · · · · · · · · · · ·							/Open/Op	en/Opening						
_	10			-				e = n.nn					(
_	11	-	Power Supply		Power Supply1 Output Setpoint			Set Value = n.nn						0		
	12	-	Power Supply		Power Supply 1			Turn_On/Open/Opening								
	13	-	Sigma		Sigma Launch 242			Turn_On/Open/Opening								
_	14	-	Sigma		Sigma Shutter Delay Mapping 1			Set Value = n.nn					17			
	15	-	Sigma		Sigma Shutter Deposit Mapping 1		1 8	Set Value = n.nn					14			
_	16	-	Sigma		Sigma Control Request		5	Set Value = n.nn						Ag E	EVAP 4KW	
	17	-	Sigma		Sigma Stop Process			Turn_Off/Closed/Closing								
_	18	-	Recipe		Dwell	Jwell			3 Seconds							
_	19	-	Sigma		Sigma Load Process		1	Turn_On/Open/Opening								
<u> </u>	20	-	Sigma		Sigma Start Process		1	Turn_Un/Upen/Upening							105-	
_	21	-	Sigma		Sigma in Process			Check_On/Open/Opening								
	22	-	Sigma		Sigma in Process			Check_Um/Closed/Closing							AI	
_	23	-	Power Supply		Power Supply I Ramp Rate		2	Set value = n.nn					U			
	24	-	Power Suppl	іў 	Power Supply1 Output Setpoint			Set Value = n.nn							U	
-	25	-	Hower Suppl	y	Power Supply 1			Turn_Oll/Closed/Closing								
	20	-	WOLUTS		Flaten Motor G	o Contindous +		um_Of	volused/u	Jusing						
*	0	-														

ABORT IF TIMEOUT

- Recipe Step 21 is used for this example. The "Recipe Items Detail "box is explained below.
- This Abort step allows 15 seconds to elapse before aborting (TimeOut for Wait).
- If the "Sigma In Process" step has not initiated after 15 seconds, the "Abort Recipe" will run and the message written in the "TimeOutMessage" box will be displayed (Sigma Process not Started).
- Inputting the value of "999" in the "Goto Sequence No. if Timeout" textbox will run the Abort Recipe.

MATERIAL REPLENISHING

- 1) Allow the thermal source (boat/crucible/wire filament/etc.) to adequately cool prior to venting the Chamber.
- 2) Make certain the thermal source is "Off" or de-energized and that both the "Ramp Rate U/s and % Setpoint boxes have "0" values entered.
- 3) Vent the Vacuum Chamber to atmosphere.
- 4) Turn off the associated circuit breaker for the thermal source.
- 5) Replenish the thermal source with applicable material.

CLEANING AND MAINTENANCE

- 1) Allow the thermal source (boat/crucible/wire filament/etc.) to adequately cool prior to venting the Chamber.
- 2) Make certain the thermal source is "Off" or de-energized and that both the "Ramp Rate U/s and % Setpoint boxes have "0" values entered.
- 3) Turn off the associated circuit breaker for the thermal source.
- 4) Use "Scotchbrite" brand or equivalent to remove deposition from thermal source feedthrough points.
- 5) Sandblast deposition shields and shutters to remove condensate.
- 6) Adequately clean "sandblasted" materials (shutters/deposition shields) with IPA and lint free wipes prior to reinsertion in vacuum chamber.
- 7) Use vented hardware on thermal feed thru posts if replacements are needed.

KAUFMAN & ROBINSON ION BEAM SOURCE OPERATION

This procedure details the operation of Kaufman & Robinson Ion Beam (KRI) sources in conjunction with KJLC CWare software. The following are examples of operating modes and are for reference only. The KRI manual should be used as a reference for specific process details.

There are two modes of operation for the discharge:

- <u>Constant Current Mode</u>: Allows for small variations in the discharge voltage while maintaining a constant current and is recommended when operating at 120V and below.
- <u>Constant Voltage Mode</u>: Will allow for small variations in discharge current while maintaining a constant voltage and is recommended when operating at 120V and above.

ION GUN POWER SUPPLY
CONSTANT CURRENT MODE

The operating condition selected for this demonstration is with a 2.5A, 120 V, discharge, which is Constant Current Mode operation. These conditions are based on a vacuum pump speed of 800 liters per second. Operating parameters for other pump speeds and gases can be found in the Ion Source Manual. Note that the operating range of the ion source may be limited by the vacuum facility pump speed or other process that take place while the ion source is running.

- 1) From the GUI Gas screen, turn on the "Ion Source Gas Valve"
- 2) Turn "On" the KRI Auto Controller via rocker switch manually.
- 3) Turn "On" the KRI Filament Controller via rocker switch manually.
- 4) Turn "On" the KRI Discharge Controller via rocker switch manually.
- 5) Place the KRI Auto Controller in "Local" Mode
- 6) Place the KRI Filament Controller in "Local" Mode
- 7) Place the KRI Discharge Controller in "Local" Mode
- 8) From the KRI Auto Controller, change the Operating mode to "Gas Only".
- 9) From the KRI Auto Controller, select "Gas 1" using the white Gas Channel Select Button.
- 10) From the KRI Auto Controller, turn the "Gas Adjust Knob" until 10 sccm is displayed on the SCCM display.
- 11) From the KRI Filament Controller, turn the "Emission Adjust Knob" until 2.7 amps is indicated in the Emission Amps display. Note that the filament emission is usually set equal to or up to 10% greater than the discharge current.
- 12) From the KRI Discharge Controller, use the white "Select" button to select Volts.
- 13) From the KRI Discharge Controller, turn the "Setpoint Adjust Knob" until the discharge voltage is at its maximum reading as indicated on the Discharge Volts display.
- 14) From the KRI Discharge Controller, use the white "Select" button to select Amps.
- 15) From the KRI Discharge Controller, turn the "Setpoint Adjust Knob" until the discharge current is set to 2.5 amps as indicated on the Discharge Amps display.
- 16) From the KRI Auto Controller, press the white "Enable/Standby Button" to "Enable".
- 17) From the KRI Filament Controller, press the white "Enable/Standby Button" to "Enable".
- 18) From the KRI Discharge Controller, press the white "Enable/Standby Button" to "Enable".
- 19) From the KRI Auto Controller, adjust the gas flow using the "Gas Adjust Knob" until the discharge voltage is approximately 120 V as read from the KRI Discharge Controller.
- 20) Operate the ion source for at least 10 minutes to clean any contaminates from the ion source that may have been introduced while at atmosphere.

21) The discharge voltage (as read from the KRI Discharge Controller) will vary slightly during this time. Adjust the gas flow (from the KRI Auto Controller) after the 10 minutes to obtain a discharge voltage of approximately 120 V (as read from the KRI Discharge Controller).

At this point the operating conditions can be saved as a program (on the KRI Auto Controller) to be used later in the "Manual Gas" mode. To save this program, first press the white "Program Select" button (located on the KRI Auto Controller) repeatedly until the desired program number is selected as indicated by the numbered red LED's. From the KRI Auto Controller, press and hold the white "Acquire Setpoints Button" until the red numbered LED that was selected stops flashing.

To Turn the Ion Source Off:

- 1) From the KRI Discharge Controller, press the white "Enable/Standby" button to "Standby".
- 2) From the KRI Filament Controller, press the white "Enable/Standby" button to "Standby".
- 3) From the KRI Auto Controller, press the white "Enable/Standby" button to "Standby".
- 4) Restarting the ion source in the **"Gas Only" mode** consists of enabling the KRI Auto Controller, KRI Filament Controller and KRI Discharge Controller (in that order). Slight variations in discharge voltages may be seen while the source is reaching operating temperature. The variations should be acceptable for most cleaning or ion-assist applications.

CONSTANT VOLTAGE MODE

The operating condition selected for this demonstration is with a 2.5 A, 150 V discharge which is Constant Voltage Mode operation. The following conditions are based on a vacuum pump speed of 1600 liters per second. Operating parameters for other pump speeds and gases can be found in the Ion Source Manual. Note that the operating range of the ion source may be limited by the vacuum facility pump speed or other process that take place while the ion source is running.

- 1) From the GUI Gas screen, turn the "Ion Source Gas Valve" on.
- 2) Turn the KRI Auto Controller on via rocker switch manually.
- 3) Turn the KRI Filament Controller on via rocker switch manually.
- 4) Turn the KRI Discharge Controller on via rocker switch manually.
- 5) Place the KRI Auto Controller in "Local" Mode.
- 6) Place the KRI Filament Controller in "Local" Mode.
- 7) Place the KRI Discharge Controller in "Local" Mode.
- 8) From the KRI Auto Controller, change the Operating mode to "Gas Only".
- 9) From the KRI Auto Controller, select "Gas 1" using the white Gas Channel Select Button.
- 10) From the KRI Auto Controller, turn the "Gas Adjust Knob" until 15 sccm is displayed on the SCCM display.
- 11) From the KRI Filament Controller, turn the "Emission Adjust Knob" until 2.7 amps is indicated in the Emission Amps display. Note that the filament emission is usually set equal to or up to 10% greater than the discharge current.
- 12) From the KRI Discharge Controller, use the white "Select" button to select Volts.
- 13) From the KRI Discharge Controller, turn the "Setpoint Adjust Knob" until the discharge voltage is set to 150 volts as indicated on the Discharge Volts display.
- 14) From the KRI Discharge Controller, use the white "Select" button to select Amps.
- 15) From the KRI Discharge Controller, turn the "Setpoint Adjust Knob" until the discharge current is at its maximum reading as indicated on the Discharge Amps display.
- 16) From the KRI Auto Controller, press the white "Enable/Standby Button" to "Enable".
- 17) From the KRI Filament Controller, press the white "Enable/Standby Button" to "Enable".
- 18) From the KRI Discharge Controller, press the white "Enable/Standby Button" to "Enable".
- 19) From the KRI Auto Controller, adjust the gas flow using the "Gas Adjust Knob" until the discharge voltage is approximately 2.5 amps as read from the KRI Discharge Controller.
- 20) Operate the ion source for at least 10 minutes to clean any contaminates from the ion source that may have been introduced while at atmosphere.

21) The discharge voltage (as read from the KRI Discharge Controller) will vary slightly during this time. Adjust the gas flow (from the KRI Auto Controller) after the 10 minutes to obtain a discharge voltage of approximately 2.5 amps (as read from the KRI Discharge Controller).

At this point the operating conditions can be saved as a program (on the KRI Auto Controller) to be used later in the "Manual Gas" mode.

- 22) To save this program, first press the white "Program Select Button" (located on the KRI Auto Controller) repeatedly until the desired program number is selected as indicated by the numbered red LED's.
- 23) From the KRI Auto Controller, press and hold the white "Acquire Setpoints Button" until the red numbered LED that was selected stops flashing.

To Turn the Ion Source Off:

- 1) From the KRI Discharge Controller, press the white "Enable/Standby Button" to "Standby".
- 2) From the KRI Filament Controller, press the white "Enable/Standby Button" to "Standby".
- 3) From the KRI Auto Controller, press the white "Enable/Standby Button" to "Standby".
- 4) Restarting the ion source in the **"Gas only" mode** consists of, enabling the KRI Auto Controller, KRI Filament Controller and KRI Discharge Controller in that order. Slight variations in discharge voltages may be seen while the source is reaching operating temperature. The variations should be acceptable for most cleaning or ion-assist applications.

The following steps must be performed prior to running in Remote Mode. Determine what mode of operation is compatible with system and perform these operational steps (Constant Current Mode Operation OR Constant Voltage Mode Operation) prior to running in remote mode.

MANUAL GAS MODE

- Manual Gas mode sequentially enables the gas, filament and discharge in the same manner that these would be enabled manually if the Gas Only mode were used. There is no feedback to adjust the gas flow to maintain the constant discharge parameters.
- 2) From the KRI Auto Controller, select the "Manual Gas" mode using the "Operating Mode Button". Select the program to run using the "Program Select" button. Enable the program by pressing the "Enable/Standby" button on the KRI Auto Controller. Press the "Enable/Standby" button again to stop the program and put the units into "Standby".
- 3) All of the setpoints can be adjusted before or after the KRI Auto Controller is enabled as in the gas only mode.

Operation in manual mode does not use interlocks.

4) Saving a program is the accomplished in the same manner as described above for the Gas Only operating modes.

GUI (REMOTE MODE)

OPERATION

ad

- 1) Turn on the Ion Source Gas valve for the Ion Source and evacuate the line to the MFC supplied with the Ion Gun.
- 2) Determine that system base pressure is acceptable.
- 3) Turn on the KRI Auto Controller via rocker switch (manually).
- 4) Turn on the KRI Filament Controller via rocker switch (manually).
- 5) Turn on the KRI Discharge Controller via rocker switch (manually).
- 6) From the KRI Auto Controller, select the program that is desired to run.
- 7) From the KRI Auto Controller, select **"Remote"** mode.
- 8) From the KRI Auto Controller, change the Operating Mode to "Manual Gas".
- 9) Turn on the **Ion Source** via the GUI Deposition screen.
- 10) This action will run the Program in remote mode using the Cware interlocks.

SHUTDOWN

- 1) Turn the Ion Source off via the GUI Deposition screen.
- 2) Turn the KRI Discharge Controller off via rocker switch manually.
- 3) Turn the KRI Filament Controller off via rocker switch manually.
- 4) Turn the KRI Auto Controller off via rocker switch manually.
- 5) Turn the Source Gas valve off for the Ion Source.

FILM THICKNESS MONITOR/CONTROLLER

Please refer to the Film Thickness Monitor/Controller manual for detailed information on operating this device. This manual can be found in the supplemental documentation binder.

Operator is responsible for setting density and z-ratio based on material. Operator is also responsible for calibrating tooling factor based on characterization runs.

EMERGENCY-OFF RECOVERY

Emergency Off button would have been pressed due to a hazardous condition. Before recovery of system, ensure that hazard no longer exists.

What happens when the EMO Switch is activated?

All power to the system is immediately shut off. The only component left energized is the System Power Distribution Unit (Pulizzi - Figure 1). The systems Monitor and PC will stay powered on for approximately 15 min. They are powered by the onboard Uninterruptable Power Supply (UPS). Also, if the system has a Cryo, its temperature controller will be powered by the UPS (See Figure 2).

FIGURE 1: SYSTEM POWER DISTRIBUTION UNIT (PULIZZI)

FIGURE 2: UNINTERRUPTABLE POWER SUPPLY

Turn this switch clockwise to STARt position. Power will be restored to system components.

SYSTEMS WITH SEPARATE CONTROL RACK & FRAME

FIGURE 3

- 1) Reset the activated EMO switch by turning it clockwise or pulling it out.
- 2) Rotate switch from On position to Start position. This returns power to system components.
- 3) Turn on system UPS (see Figure 2).
- 4) Turn on system PC, let Windows boot up.
- 5) Once in Windows, open CWare.

SYSTEM WITH INTEGRATED CONTROL RACK & FRAME

- 1) Depress the EMO switch located at front of mainframe.
- 2) Turn on system UPS (see Figure 2). It may need to charge for a few minutes before next step.
- 3) Turn on system PC, let Windows boot up.
- 4) Once into Windows, open CWare.

RECOVERY FROM ACCIDENTAL PRESSING OF EMO

In the event of an accidental EMO, a quick recovery can be performed by:

- 1) Resetting the EMO that was activated. If system is a PVD or NANO, go to step 3.
- 2) If the system is a CMS, see Figure 3 and turn switch on Main Power Control strip to START position (Main Power Control not on PVD or NANO).
- 3) Wait 10 seconds and exit CWare.
- 4) Wait 10 seconds once CWare has closed.
- 5) Restart the CWare software. Failure to restart this software may result in serial devices not responding to user requests. Examples of possible problems would be values in motor text box on motion screen will disappear (See Figure 4) and cryo pump temp or Turbo speed may read zero. This occurs because they are on a serial connection. When the communication is broken, it needs to be re-established again with a CWare restart.

If the message below appears, the system EMO is still activated or power has not been restored to the Wide Range Gauge (MKS979). This message will prevent CWare from functioning until EMO has been reset and power has been restored to the device.

KJL 🔀
An action cannot be completed because a component (MKS979) is not responding. Choose "Switch To" to activate the component and correct the problem.
Switch To Retry Cancel

FIGURE 4

System Shutdown

- 1) User press exit button in CWare. Wait for CWare software to exit.
- 2) Shut down Windows software.
- 3) Turn UPS off.

PVD System

Turn breaker OFF at System Power Distribution Unit. Location of breaker depends on type of Power Distribution Unit installed.

3 PHASE POWER DISTRIBUTION UNIT

SINGLE PHASE POWER DISTRIBUTION UNIT

SHUT DOWN

- 1) Verify that all gas valves are closed, the source and heater supplies are turned off, and that the temperature is below 80°C.
- 2) Turn off the ion gauge filament.
- 3) If leaving the system under vacuum:
 - a) Complete the pumpdown sequence (if the system is not already under vacuum) as described in the appropriate pumpdown procedure.
 - b) Close the high vacuum valve.
 - c) Turn off the turbo pump controller.
 - d) When the turbo stops, close the roughing valve.
 - e) Turn the mechanical pump off (if it is on).
- 4) If leaving the system vented:
 - a) Close the hivac valve.
 - b) Turn off the high vacuum pump (this initiates the AutoVent).
 - c) Turn off the mechanical pump.
- 5) Turn off the individual branch circuit breakers on the main power distribution box (branch breakers are located behind the hinged access panel on the power distribution box).
- 6) Turn off the individual component power switches as required (power supplies, turbo controllers, etc.).

At this point the system is at shut down. Power can now be removed from the whole system or any of the system components. Refer to the manufacturers' manuals to make sure that all equipment is in a safe mode.

SOFTWARE OPERATION

CWARE OVERVIEW

The Kurt J. Lesker Company CWare HMI (Human Machine Interface) consists of two components:

- System Database
- Runtime Software

Together, these two components give the system operator an interface that provides capabilities such as:

- Process automation
- Process (recipe) creation
- System status
- Manual control of the system
- Datalogging
- Alarms
- Password protection
- Interlocks
- Offline process editing

The software operates on a Windows based computer with a mouse, keyboard, and standard CRT flat screen monitor (or optional touchscreen monitor).

GENERAL GUIDELINES

CWare enables the user to run the tool manually or in an automated fashion, as well as provides system and process feedback.

- All actions and selections are done with a **single mouse click** (or single push of the finger, in the event of a touchscreen monitor). There are NO double-click actions on any Runtime screen.
- All buttons are typically two state radio buttons that can be either up or down. When a button is visible it indicates either the state of a request to turn on a device, the state of a sequence, or the active navigation screens. Typically, a button that is "pressed" or down indicates that the user (or a process) is requesting the respective device to turn on. A button that is not pressed or up signifies a device that is being requested to turn off.
- Devices that can be turned on or off typically have an **indicator or icon** inside their respective control buttons. While the state of the button indicates whether or not a device is requested to turn on or off, the color of the indicator or icon inside the button notifies the user of the actual state of the device. Color definitions for each button or indicator can be found in the section of the manual that corresponds to the screen on which it appears.
- All alphanumeric fields will appear as green text with a black background when not accessible by the logged-in user and white text when the field is accessible. The alphanumeric interface shown here will appear when an available data entry field is clicked. The maximum and minimum values for each numeric variable are displayed at the upper right within the pop-up screen while the signal name appears at the left of the title bar.

- The availability of the **Runtime Software Screens** is based upon the parameters set for the logged in user (See the *Security* Section for further details). This manual is intended to provide information regarding the operation of ALL features currently available in CWare. Not all features/screens are available on every system. Disregard the manual sections for the features/screens not included in your system configuration.
- **Tool Tip Text** is displayed for all controls and indicators on all screens. Without clicking, place the mouse cursor over the control or indicator to see the Tool Tip Text.

TERMINOLOGY AND DEFINITIONS

- Access Forms the portion of the HMI associated with the system database. These forms (or screens) are used when developing processes, recipes, and configuring the Runtime software.
- ANALOG INPUTS (AI) system Input that can have many different numerical values (positive or negative), both integer and decimal. *Analog Inputs* include motor speeds, gas flows, pressure, temperatures, power supply feedback signals, etc.
- ANALOG OUTPUTS (AO) system Output that can have many different numerical values (positive or negative), both integer and decimal. *Analog Outputs* include motor speed setpoints, gas flow setpoints, heater temperature and ramp setpoints, power supply setpoints, etc.
- DISCRETE INPUT (DI) system Input that can have only one of two values (i.e. on/off, 1/0, opened/closed). *Discrete Inputs* include vacuum switches, flow switches, gate valve positions, etc.
- **DISCRETE OUTPUTS (DO)** system Output that can have only one of two values (i.e. on/off, 1/0, open close). *Discrete Outputs* include valves, pumps, power supply enable signals, heater enable signals, shutter open/close signals, etc.
- **STRING INPUTS** Can be Discrete or Analog and are used primarily for communication with serial devices.
- **STRING OUTPUTS** Can be Discrete or Analog and are used primarily for communication with serial devices.
- **DOWNSTREAM PRESSURE CONTROL MODE** method of pressure control mode whereby effective pumping speed is varied and gas flow is held constant to achieve a desired pressure. The point of pumping is referred to as being downstream relative to the means of gas introduction.
- **HMI** Human Machine Interface. This refers to the computer control screens utilized by the operator to run the tool and monitor system status.
- MFC Mass Flow Controller. This refers to a device for introducing process gas at a controlled (variable) rate, typically in units of sccm (standard cubic centimeter per minute).
- **PID CONTROL** Proportional Integral Derivative Control. A type of control used in closed loop feedback systems. See *Operation Gas* section for more information.
- **RECIPE** an automated sequence that consists of one or more steps or recipes. The steps specified in a given recipe are executed in a pre-defined (increasing numerical) order.
- **RUNTIME SCREENS** the portion of the *HMI* associated with the Runtime software (as opposed to the system database forms). These are the screens most often used when operating the tool.
- **RUNTIME SOFTWARE** the control software responsible for I/O system interface, control logic, recipe execution and a majority of the *HMI*.
- **STEP** the part of a recipe that sets and checks system I/O. Steps can be thought of as the building blocks for recipes.

- **SYSTEM ABORT** in case of a dangerous situation, when the *System Abort* button is pressed on the *HMI* (or the system is aborted as the result of a *Red Alarm* or device communications error) all processes are stopped and all *Discrete* and *Analog Outputs* are set to their default (startup) state as configured by the system database. Typically most *Discrete Outputs* are turned off and most *Analog Output* setpoints are set to zero.
- **System DATABASE** a Microsoft Access database that contains recipes, user information, and system configuration details.
- SYSTEM I/O system Inputs/Outputs. I/O refers to the electronic hardware controls for a system. Inputs are typically device signals that provide system status or feedback. Examples of Inputs include flow switches, vacuum switches, valve positions, pressures and motor speeds. Outputs are typically device signals that provide system control or manipulation. Examples of Outputs include pumps, valves, flow setpoints and power supply setpoints.
- UPSTREAM PRESSURE CONTROL MODE method of pressure control whereby effective pumping speed is held constant (i.e. fixed position throttle valve) and gas flow is varied to achieve a desired pressure. The point of gas introduction is referred to as being "Upstream" relative to the means of pumping.

SECURITY

KJLC CWare security is managed with a user name and password approach. Ideally, one or two people should be assigned to manage the system security. The System Administrator(s) will need to assign a login name for each person that will operate the system using the computer interface. Each login name will be assigned parameters that dictate that user's access to the software. The *System Users Screen* is used to administer this information and is accessed through the *System Database*:

- 1) On the Operation Vacuum Screen, click the Recipe Database button.
- 2) Click the Systems Users button on the topmost toolbar of the System Database Screen.
- 3) The following screen should appear:

ADDING A NEW USER

- 1) Click the New User button.
- 2) Choose a unique Log-in Name for the new user and type it in the User Log-in Name box. This is the field that will get captured during datalogging.
- 3) Complete the SurName (last name), FirstName, and Initials boxes with the person's actual name and initials.
- 4) Using the drop-down menu, choose which software screen should appear first when this user logs onto the system.
- 5) The password is chosen by the user when they log in for the first time and must consist of at least one character.
- 6) In the set of checkboxes labeled Recipe Database Access, choose the database screens that this user should be allowed access to.

A CAUTION

Access to the Interlock Screen should only be granted to the Super User level (System Administrator). No Operators or Process Engineers should be allowed access to the Interlocks Screen.

- 7) In the set of checkboxes labeled VB Mainform Access, choose the screens that this user should be allowed access to.
- 8) In the set of checkboxes labeled VB Other Access, choose the appropriate boxes:
 - a) Operate if Running Recipe allows the user to operate heaters/shutters on the runtime software screens while a recipe is running
 - b) Can change ANY recipe Can amend any recipe, even if the user does not own the recipe.
- 9) Also in the VB Other Access box, choose a level of security for the new user:
 - <u>Operator</u> Can only run recipes that have been assigned to Operators.
 - <u>Process Engineer</u> Can only run recipes that have been assigned to Process Engineers.
 - <u>Super User</u> Can run, modify and delete any recipe. This is the highest level of security.

DELETING A USER

To delete a user, simply select that user from the *Find Existing System User* box, and then click the *Delete User* box. The deleted user's recipes and any other associated data will still be available.

MODIFYING A USER'S ACCESS

At any time, the access parameters for a user can be changed. Simply select that user from the *Find Existing System User* box, and then modify the parameters as required.

RESETTING A PASSWORD

To change the access parameters for a user, simply select that user from the *Find Existing System User* box, and then check the *Clear Password* button. The password will be rechosen by the user when they log in the next time and must consist of at least one character.

SOFTWARE FILE STRUCTURE & MAINTENANCE

KJLC CWare consists of two components: Runtime Software and Microsoft Access database files. The .exe and supporting files are located in this folder: C:\Program Files\Lesker\Your Company Name. The data directory in the path mentioned above is where supporting database files and the datalog.mdb file is stored. To access the datalog.mdb file double click it. Or if the software is running, open MS Access from the Start menu and browse to this file then open it.

 $\overset{\textcircled{}}{\textcircled{}}$ It is the responsibility of the customer to periodically backup the system software and database, as well as remove or archive the datalog information.

ho KJLC does not recommend using CDRW discs or storing multiple backups on a single CD.

BACKING UP SYSTEM DATA

- 1) Stop the system software from running.
- 2) Launch Nero CD burning software.
- 3) Add the C:\Program Files\Lesker directory of data to be saved to CD.
- 4) Burn the disk.

RESTORING SYSTEM DATA

- 1) Stop the system software.
- 2) Copy the Lesker directory from the backup disk to C:\Program Files.
- 3) Right click on the restored Lesker folder and un-check the Read Only attribute box.
- 4) Apply this to the current folder, sub folders and files.

SOFTWARE UPGRADES

Periodically, KJLC will address performance issues with the Runtime Software or add features to the Runtime Software as well as the database. Depending on the nature of the changes, KJLC may request that the customer send KJLC a recent backup of their software to facilitate creating a software revision that may be installed by the customer. Some revisions pertaining to software performance and existing features will be available to the customer at no charge; other revisions will be available for purchase as an option.

Typically, upgrading the Runtime software involves copying a new "*Customer Name*" folder from a CD provided by KJLC to the computer's C:\ drive (refer to Soft*ware File Structure and Maintenance* section). Follow the instructions included with the revision CD for loading software upgrades

COMMON ICONS

These common icons appear throughout the Runtime software screens. Some icons appear on every screen, others only where specified.

TIME AND DATE BANNER

K 4.2E-8 12:00:05 PM 12/15/2005

The *Time and Date Banner* appears at the top left of all runtime screens. The current Windows time and date is displayed.

RUNNING TIME INDICATOR Running Time 0:00:03

The *Running Time Indicator* appears at the top left of all runtime screens. The time displayed here is the elapsed time that the software has been up and running since the last shut down.

LEGEND INDICATORS

The *Legend Indicators* appear at the top left of all runtime screens. The status of a corresponding active or inactive signal is indicated here.

SOFTWARE VERSION

Version 2.23

The *Software Version* box appears at the top left of all runtime screens. This box displays the current CWare software revision.

EXIT BUTTON

Exit

The *Exit Button* appears at the top right of all runtime screens. Pressing this button closes both the runtime engine and the system database.

LOGIN / LOGOUT BUTTON

Logout KJLC Super User

The *Login/Logout Button* appears at the top right of all runtime screens. This button allows the user to login or logout of the software. This icon also displays the login name and security level of the current user.

ABORT BUTTON

ABORT

The *Abort Button* appears at the top right corner of all runtime screens. Pressing it activates an abort condition.

LIGHT TOWER			

The *Light Tower* appears in the top right corner of all screens. When the topmost bar is illuminated red, a red alarm condition is present. The second bar will light yellow to indicate a yellow alarm. The third bar will light green to indicate that a recipe is running. The bottom bar will light blue to indicate a "normal" status, no alarms are present and no recipes are running.

This set of *Navigation Buttons* appears on the Runtime Software screens. They are used to navigate the major screen groups. Each button opens a new screen with a different set of information or data.

NAVIGATION BUTTONS – SYSTEM DATABASE

💡 Help 🛛	Recipes	🐧 Recorded Data	🔠 Action Log	🛃 Interlocks	🔝 Sigma Data Sets	•• Configuration	🍇 System Users
----------	---------	-----------------	--------------	--------------	-------------------	------------------	----------------

This set of Navigation Buttons appears at the top of the System Database and is used to navigate throughout the database. Each button opens a new screen with a different set of information or data.

Command Buttons appear on all Runtime Software screens and are used to run preprogrammed processes as well as user-selected processes. In addition to standard *Command Buttons*, additional custom buttons are available to be configured by KJLC upon customer request. The number of custom buttons available depends upon system configuration.

OPERATION

VACUUM SCREEN

K 1.8E-4 10:07:40 AM 2/12/2007	Operation-¥acuum	Copyright © 2007. Kurt	J. Lesker. ¥3.04 🛛 🗙
Kurt J. Lesker Running Time Open/On Ocompany 0:00:02 Closed/Off		Exit Logout KJLC Super User	ABORT
Vacuum Deposition Gas	Heating Cooling Motion	MKS979	
	OFF PC Door Lock LOCKED PC Vent Valve VAC VAC VAC CAP*mTor 10000 MKS-Tor UNDER DEGAS FILMMT OFF OFF Subst Temp-deg C 22 PC Roughing Valve	to Pump Speed SP 100 peed X G90 Pump PC SPEED PC Turbo Vent Valve PC Turbo Backing Valve	Start PC Pump Start PC Vent Start Turbo Pump Vent
		Roughing Pump	Recording Start
Operation System			Help

The chamber representations appear white while at atmosphere and get darker as the pressure in the chamber decreases. The Process Chamber above is at high vacuum (black), while the Load Lock chamber above is at atmosphere (white).

ICON OR DATA FIELD	Αстіо	RESULT
OFF PC Door Lock	Click to activate	Clicking the on/off button will lock or unlock the process chamber door while the locked/unlocked icon indicates the current status.
Valve Icons	Click to activate	Green / Pressed = open or active Gray / Unpressed = closed or inactive
Valve Indicators	Display only	Indicates position of valves with real feedback, such as the isolation and high vacuum valves
Fault FAULT	Display only	This icon will only appear during a fault condition

ICON OR DATA FIELD	Αстіо	RESULT
Speed-%	Display only	Indicates the current speed of the LL turbo pump
Pirani Gauge PRNI-Torr 6.1E+0	Display only	Indicates Pirani gauge pressure in Torr
Cryo Temperature Cryo-K 012	Display only	Indicates the temperature of the Cryo pump in Kelvin
Regeneration Pressure PRNI-mTorr 2.4E-3	Display only	Indicates pressure in mTorr of the Cryo pump during regeneration
Pump Icons	Display only	On = green, animated motion, and appear pressed/down Off = gray, no animation, and appear un- pressed/up
Turbo Speed Setpoint PC Pfeiffer Turbo Pump Speed SP	Click to enter value	Enter the desired turbo speed in percent (valid range is 20-100%)
Process Chamber:		
Vacuum Indicator	Display only	Gray = atmospheric pressure
Pressure WRG-Torr 7.1E-8	Display only	Indicates wide range gauge pressure in Torr
Capacitance Manometer	Display only	Indicates capacitance monometer pressure in mTorr
Temperature Substrate-deg C 22.0	Display only	Indicates process chamber temperature in degrees Celsius
Degas DEGAS	Display only	Green = Degas mode on Gray = Degas mode off
LL Chamber Pressure WRG-Torr 7.1E-8	Display only	Indicates wide range gauge pressure in Torr

ICON OR DATA FIELD	Action	RESULT
LRP End of Travel	Display only	Green = LRP is fully retracted (End of Travel) Illuminates to On color if active and Off color if inactive
On/Off ON OFF	Click to activate	Turns on/off the corresponding equipment.
Filament FILMNT	Display only	Green = hot filament on Gray = hot filament off

DEPOSITION SCREEN

Kurt L Lecker Running Time Open/On	Operation-Deposition	Copyrig	ht © 2005. Kurt J. Lesker. VI.3
Company 0:00:02 Closed/0		E xit	Super User ABORT
Vacuum Deposition	aas Motion Cooling I	leating	
_ Shutters	Heater Control Platen Control	Pressure Gas Flow	
Gun3 Shutter	ON Substrate Heater ON Setpoint Text3	ide Range Gauge PC 1.0E-1 Torr MFC1 SP 0	000.0 Recipe Database
Gun2 Shutter Gun4 Shutter	OFF Substrate Heater Auto Velocity (RPM)	Capman Pressure MFC2 SP 0	000.0 Run Recipe
Substrate Shutter	250 Substrate Heater Temp Sp 0.0 10 Substrate Heater Ramp Rate	Capman Pressure SP	Start PC Pump
	24.0 Substrate Heater Temperature		Start PC Vent
Gun1 Shutter	Power Ramp Fwd	Ríl	
	Supply Setpoint Units U/s W Power Supply 1 0N 0 Watts 0 0000	er Power DC W Bias V Watts Volts 0000 0000	Amps Start LL Pump
	Power Supply 2 OFF 0 Watts 0	0002 0000	0.0 Start LL Vent
Source Configuration		1 1	
Source1 Material Al 7.7E-2	Power Supply 3 OFF 0 Watts 0	0001 0000	0.0 Vafer
Source2 Material AI 2 4.3E-2	Power Supply 4 OFF 0 Watts 0 0000	0000 0000	
Source3 Material Al 3 6.0E-2 Source4 Material Al 4 7.0E-2			
Source6 Material 0 0 1.2E-1	Power Supply 6 OFF 0 Watts 0 0000	0000	Recording Start
Operation System			Help

ICON OR DATA FIELD	Action	RESULT
Shutter Indicators	Display only	Green = Open Gray = Closed
Source Switches ON OFF	Click to activate	Turns respective source switch on/off
Source Material Material Al	Click to enter current target material	Target material is displayed on the Operation – Deposition screen and recorded in process and manual datalogs
Source Power Supply Mapping Target 1	Click text to map source to a particular power supply and switch position (if applicable)	The mapped source kilowatt-hours counter will increment accordingly when the respective power supply is on and has positive output power

ICON OR DATA FIELD	ΑстιοΝ	RESULT
Source Kilowatt Hours	Displays current kilowatt-hours for a particular target.	The kilowatt-hours counter increments accordingly based on the output state of the corresponding power supply.
0.0E+1	Click to zero or preset the kilowatt-hours counter.	The counter is set accordingly and increments from the preset value.
Power Supply On/Off ON OFF	Click to activate	Turns respective power supply on/off
PS Output Setpoint Setpoint 0	Click to enter value	Enter the desired power supply output setpoint in Watts (also see Ramp Rate below)
PS Ramp Rate Ramp Rate	Click to enter value	Enter the desired power supply ramp rate in units per second
U/s 0		NOTE: Set Ramp Rate PRIOR to setting the output setpoint.
Power Supply FeedbackFwd Power WRfl Power WDC Bias V000000000000WattsVoltsAmps000500000.003	Display only	Displays current power supply status

Refer to the *Operation - Heating* section for descriptions of heater control icons included on the Deposition screen.

Refer to the *Operation - Gas* section for descriptions of gas and pressure control icons included on the Deposition screen.

Refer to the *Operation - Motion* section for descriptions of platen control icons included on the Deposition screen.

GAS SCREEN

K 1.0E-1 1:40:41 PM 12/20/2005	Operation-Gas	Copyright © 2005. Kurt J. L	esker. ¥1.3
Kurt J. Lesker Company Bunning Time Open/On 0:00:22 Closed/Off		Exit Logout KJLC Super User	ABORT
Vacuum Deposition Gas	Motion Cooling Heating		
	Source1 Gas Capman Pressure 100.00 mTorr Source2 Gas Cap Pres P[8]	ure Control Capman Capman Pressure SP Range 0 mTorr 100 mTorr	Recipe Database
	Cap Pres. D 02	Wide Range Gauge	Start PC Pump
	Source4 Gas		Start PC Vent Start LL Pump
Mode 0: MFC flows at the current flow set point. Mode 1X: MFC is slaved to MFC X. Mode 4: MFC controls flow to match the capman set point. Setpoint Flow Corr. Range			Start LL Vent
SCCM SCCM Mode Ratio % Factor SCCM MFC1 0 000.0 0 100 1.37 100 MFC2 0 000.0 0 100 1.37 100	Argon Etch		Start Transfer Wafer
MFC3 0 000.0 0 100 1.37 100			
			Recording Start
Operation			Help

ICON OR DATA FIELD ACTION		Result
MFC Setpoint Setpoint SCCM 0	Click to enter value	Sets MFC flow in sccm. <u>NOTE:</u> Applies to Independent Mode only
MFC Flow Flow SCCM 000.3	Display only	Indicates gas flow from corresponding MFC
MFC Mode Mode	Click to enter value	Sets mode of operation for corresponding MFC. Mode 0 = Independent (Flow) Mode Mode 1X = Slave Mode (X = master) Mode 4 = Upstream Pressure Control Mode
MFC Ratio % Ratio %	Click to enter value	Sets MFC flow as a percent ratio of master channel (Slave Mode). Sets MFC contribution as a percent of full range (PID/Pressure Control Mode).

ICON OR DATA FIELD	Action	RESULT		
MFC Correction Factor Corr. Factor 1.39	Click to enter value	Sets gas correction factor for corresponding MFC (as a function of nitrogen calibration).		
		Refer to gas controller manual(s) or web site(s) for gas correction factor tables.		
MFC Range Range SCCM 100	Click to enter value	Sets flow range of corresponding MFC in sccm (max nitrogen flow)		
Capman Pressure Capman Pressure 000.10 mTorr	Display only	Indicates Capman pressure in mTorr		
Capman Pressure Setpoint	Click to enter value	Sets desired chamber pressure in mTorr.		
Capman Pressure SP 0 mTorr		NOTE: Requires one MFC in Mode 4 and corresponding gas valve open		
Capman Range Capman Range	Click to enter text	Sets the range of the capacitance manometer in mTorr.		
100 mTorr		NOTE: Maximum value is typically 1000 mTorr.		
Wide Range Gauge Wide Range Gauge 7.1E-8 Torr	Display only	Indicates wide range gauge pressure in Torr		
<u>NOTE</u> : DO NOT adjust PID values for pressure control loop while in Pressure Control Mode.				
Capman Pressure – Proportional Term Cap Pres P 4	Click to enter value	Sets proportional term for pressure control loop. The proportional term determines the amount of change in gas flow to compensate for the difference between desired pressure and actual pressure – the greater the proportional term, the quicker the flow will change to adjust for pressure differences (large P terms can lead to instability). This is the most critical term for tuning the pressure control loop. Typically, as the throttle		
		position increases (greater conductance = higher effective pumping speed), the P term must be increased to achieve the desired pressure (greater change in gas flow is required to affect a pressure change).		

ICON OR DATA FIELD	Action	RESULT
Capman Pressure – Integral Term Cap Pres I 1.5	Click to enter value	Sets integral term for pressure control loop. This term typically does not need to be changed from its factory default value.
Capman Pressure – Derivative Term Cap Pres D	Click to enter value	Sets derivative term for pressure control loop. This term typically does not need to be changed from its factory default value.

Refer to the *Operation – Vacuum* section for descriptions of heater control icons included on the Gas screen.

GAS CONTROL OVERVIEW

The software supports control of up to 4 MFCs in flow or pressure control modes. Only one MFC can be designated as the "master" for upstream pressure control, but any of the remaining MFCs can be "slaved" to the master. Any MFC can be set for independent or slave flow mode at any time. The ranges for the gas flow and pressure hardware can be changed (in appropriate maintenance levels) to accommodate modifications by the customer. Additionally, pressure control PID values can be changed manually (on the *Operation – Gas* screen) or in a recipe to accommodate various throttle valve positions.

MASTER/SLAVE OPERATION

Master/Slave relationships are ratiometric based on flow. Multiple levels of this relationship are supported so that an MFC slaved to one channel could also be master to another. The flow of a given slave channel is based on the actual flow of the corresponding master channel, not the setpoint of the master. In this way, if the master channel is not flowing correctly or is otherwise limited, the gas composition remains correct. Additionally, if a given slave flow is limited based on that MFC's range, the flow setpoint for the corresponding master is limited to maintain the desired gas ratio.

SLAVE MODE EXAMPLE

Mode 11 for MFC 2 slaves MFC 2 to MFC 1. The flow setpoint for MFC 2 = (actual flow of MFC1) x (the ratio of MFC2). So if MFC1 actual flow = 100 sccm and MFC 2 ratio is 50%, MFC2 flow setpoint = 50 sccm.

SLAVE MODE NOTES

A channel cannot be slaved to itself. If this is requested, the channel will be set to Independent Mode with a flow setpoint of zero.

A circular slave relationship is not allowed. If two channels are slaved to each other, the highest number MFC is set to Independent Mode with a flow setpoint of zero. If the setpoint for a slave channel is greater than its range, the setpoint for the slave is limited to its maximum and the corresponding setpoint for the master channel is set such that the desired gas composition is maintained.

PRESSURE CONTROL

The software uses closed loop PID control to accomplish upstream pressure control. When a given MFC is assigned to pressure control mode, the software adjusts that MFC's flow rate setpoint accordingly based on the desired pressure setpoint and the actual pressure reading supplied by the capacitance manometer. If any additional channels are slaved to the pressure control channel, then their flows will also be adjusted respectively.

MOTION SCREEN

K 4.2E-8 11:58:00 AM 12/15/2005	Operation-Motion	Copyright © 2005. Kurt :	J. Lesker. V1.2
Kurt J. Lesker	n/On	Exit Logout KJLC	ABORT
0.00.01 2.050			
Vacuum Deposition	Gas Motion Cooling Heating		
Platen Motor			
On D.0 RPM 0	Acc. Text11		Recipe Database
Home Offset Velocity SP Referenced	P Text8 I Text9		Run Recipe
Jog/Cont. Jog Velocity Moving Fwd Text2	Drive Motor Continuous		Start PC Pump
Go To Velocity Cur Pos Set Point			Start PC Vent
	Stop A1		Start LL Pump
			Start LL Vent
			Start Transfer Wafer
			Recording Start
Operation System			Help

Additional icons appear on the Operation - Motion screens for systems equipped with automatic transfer. Please disregard descriptions for icons not included with your particular system configuration.

ICON OR DATA FIELD	Action	RESULT
Platen Motor On	Click to activate	Click to turn the Platen motor on
Platen Motor Velocity Velocity 0.0 RPM	Display only	Indicates the current motor velocity in RPM or IPS depending on motor
Platen Motor Errors Errors POS	Display only	Indicates if an error occurs with the platen motor
Platen Home	Click to activate	Click to send the motor home. The button will stay pressed while the platen is homing. Once the platen is homed/referenced, the button changes to un-pressed.

ICON OR DATA FIELD	ΑстιοΝ	RESULT
Platen Home Offset Offset Text1	Click to enter value	Enter the desired offset from home that you want the motor to consider its new home. When you home with an offset, the motor will go home, then move to the offset and consider this location to be 0.
Home Velocity Setpoint Velocity SP Text1	Click to enter value	Enter the desired home velocity in RPM or IPS depending on motor
Referenced Indicator Referenced	Display only	Indicates when the motor is referenced. Green / 1 = referenced Gray / 0 = not referenced
Platen Jog Forward Jog Fwd	Click to activate	Click and hold to move the motor in the forward direction. The motor will stop when the button is released.
Platen Jog Reverse Jog Rev	Click to activate	Click and hold to move the motor in the reverse direction. The motor will stop when the button is released. <u>NOTE:</u> Some motors are restricted to forward motion only. In this case, the Jog Rev button is not visible
Jog/Continuous Velocity Jog/Cont. Velocity Text2	Click to enter value	Set the jog and continuous velocity for the motor in RPM or IPS. Jog and Continuous motion share the same velocity setpoint
Moving Indicator	Display only	Indicates when the motor is moving. Green / 1 = Moving Gray / 0 = Not moving
Go To Position Go To Position	Click to activate	Sends the motor to the position indicated in the position setpoint box at the velocity shown in the position velocity setpoint box. This button stays pressed until the motor reaches the position setpoint
Position Velocity Velocity 0.0 RPM	Click to enter value	Set the velocity at which the motor should move to the desired position
Currrent Position Indicator Cur Pos 206.9	Display only	Indicates the current position of the motor
Motor Position Setpoint Set Point Text5	Click to enter value	Enter the setpoint for the motor to move to when the Go To Position button is activated
ICON OR DATA FIELD	ΑстιοΝ	RESULT
--	--	---
Motor Forward	Click to activate	Initiates the motor to move in a forward motion at the Jog/Cont velocity. The motor will move continuously until the button is clicked again
Motor Reverse	Click to activate	Initiates the motor to move in a reverse motion at the Jog/Cont velocity. The motor will move continuously until the button is clicked again
Motor Error Reset	Click to activate	Resets motor error conditions
Stop Motion Button	Click to activate	Click to stop all motor motion
Station Setpoints Station 1 4.2 IN	Click to enter Value	Enter the desired setpoint in inches
Go To Station Go To Station	Click to activate	Causes the shutter motor to go to the location specified for the given station
NOTE: The following icons and fields are available for adjustment, however it is highly recommended that the SMI User's Guide be read prior to adjusting these parameters. Changing motor tuning parameters can seriously degrade the performance of your motors.		
Motor Acceleration Acc. Text11	Click to enter value	Set or change the motor acceleration (Refer to the SMI User's Manual)
Maximum Motor Current	Click to enter value	Set the maximum motor current (Refer to the SMI User's Manual)
Motor PID Filter P Term P Text8	Click to enter value	Refer to the SMI User's Manual
Motor PID Filter I Term	Click to enter value	Refer to the SMI User's Manual
Motor PID Filter D Term	Click to enter value	Refer to the SMI User's Manual
Substrate X/ Source Y (Substrate Position Key) (See example below)	Click text to enter the desired station setpoint in degrees.	The platen will move to the desired position when the station setpoint is used in conjunction with the enable position button.

SUBSTRATE X/SOURCE Y EXAMPLE

This station setpoint is intended for systems with single or multiple platens. For example, a station setpoint of 14 on a system with one platen signifies that platen 1 (the only platen) should move to deposition source (or position) 4. A station setpoint of 25 on a system with 4 platens signifies that platen 2 should move to deposition source (or position) 5.

Setting a new station setpoint places a value in the motor position setpoint (in inches or degrees, depending on the type of axis), but the Move to Position button must be pressed before the motor will actually move.

COOLING SCREEN

K 1.0E-1 2:27:28 PM 12/20/2005	Operation-Cooling	Copyright © 2005. Kurt J.	Lesker. ¥1.3
Kurt J. Lesker Company Bunning Time Open/On dd:hh:mm Closed/Off		Exit Logout KJLC Super User	ABORT
Vacuum Deposition Gas	Motion Cooling Heating		
			Recipe Database
Src1 Flow Switch Src2 Flow Switch			Run Recipe
Src3 Flow Switch			Start PC Pump
Src4 Flow Switch			Start PC Vent
			Start LL Pump
			Start LL Vent
			Start Transfer Wafer
			Recording Start
Operation			Help

ICON OR DATA FIELD	Action	RESULT
Flow Switch(es) Src1 Flow Switch Src2 Flow Switch	Display only	Green = On Gray = Off

HEATING SCREEN

K Operation-Heating Copyright © 200	19. Kurt J. Lesker. V4.33124 🛛 🗙
Kurt J. Lesker Running Time Open/On 0:01:18:01 Closed/Off	Exit Logout KJLC Super User ABORT
Vacuum Deposition Gas Heating (Cooling Platen Motion LRP Motion
Heater Control Temp On/Dif Auto SP Auto SP BR dea	Terro Turrent
deg C deg C % SP C/Min P Substrate Heater OFF OFF 0 198.8 0 20 .7	I D deg C deg C A Alarm Recipe Database
	Run Recipe
	Start PC Pump
	Start PC Vent
	Start LL Pump
	Start LL Vent
PC Pressure PC Cryo Temperature	Start Sample Load
MKS-Torr 006 8.00E+2 PC High Vac Valve	Start Sample Unload
10000 PC High Vac Throttle	Start Cryo Regen
OFF	Recording Start
Operation System Maintenance 8.0	0E+2

ICON OR DATA FIELD	ACTION	RESULT
Overtemperature Ovr Temp deg C 21.7	Display only	This icon is only visible when the heater is over temperature
Temperature Setpoint Temp SP deg C 250	Click to enter value	Enter the desired temperature setpoint
Auto Mode Setpoint Auto SP deg C 175.7	Click to enter value	Enter the desired temperature setpoint for Auto Mode. When Auto Mode is enabled, this value is used in conjunction with the Ramp Rate box to achieve the desired temperature. <u>NOTE:</u> If a ramp rate is desired, it must be entered PRIOR to entering the desired temperature.

ICON OR DATA FIELD	ΑстіоΝ	RESULT
Heater Setpoint Temp SP	Click to enter	Enter the desired heater output as a percentage of full scale.
250	value	When Auto Mode is disabled, the heater can be controlled by power setpoint
		Enter the desired ramp rate to be used during Auto Mode in degrees C per minute.
Ramp Rate		Once a ramp rate is entered followed by a new Temperature Setpoint, the heater will ramp to the desired value.
RR deg C/Min 10	Click to enter value	NOTE: The ramp rate starting point is the CURRENT Temperature Setpoint, NOT the current actual temperature. To avoid delays in achieving the desired ramp temperature, be sure to set the Temperature Setpoint close to the actual temperature, then set the desired ramp parameters, and finally the target temperature.
Over Temperature Indicator Ovr Temp deg C 21.7	Display only	Monitors for an over temperature condition.
Temperature Indicator Temp deg C 22.0	Display only	When Auto Mode is enabled, this field displays the current temperature control setpoint. If a ramp rate has been specified, this field displays the temperature setpoint as it ramps up rather than the final target temperature.
	Click to enter value	Enter the Proportional coefficient for the Auto Mode temperature control loop. The control loop is immediately changed.
Proportional Coefficient P Text8		The P term determines the change in heater output power applied to compensate for differences between actual and desired temperature. Typically, larger P terms are required for greater thermal mass.
		<u>CAUTION:</u> Disable Auto Mode while adjusting PID parameters.

ICON OR DATA FIELD	Action	RESULT
Integral Coefficient	Click to enter value	Enter the Integral coefficient for the Auto Mode temperature control loop. The control loop is immediately changed. <u>CAUTION:</u> This term does not typically need to be adjusted from its factory default value. Disable Auto Mode while adjusting PID parameters.
D Request D Text10	Click to enter value	Enter the Derivative coefficient for the Auto Mode temperature control loop. The control loop is immediately changed. <u>CAUTION:</u> Disable Auto Mode while adjusting PID parameters.
Heater On Manual Button ON OFF	Click to activate	Green = Heater On Gray = Heater Off
Heater On Auto Button	Click to activate	Green = Auto Mode Enabled Gray = Auto Mode Disabled When Auto Mode is enabled, the heater is controlled by the temperature setpoint rather than % power.

Refer to the *Operation – Heating* section for descriptions of heater control icons included on the Heating screen.

MKS979 GAUGE

K 1.8E-4 1:55:44 PM 2/13/2007		Maint	enance-PC MK5979	Copyright © 2007. K	urt J. Lesker. V 🗴
Kurt J. Lesker	en/On ed/Off			Exit Logout KJLC	ABORT
Version 3.30					
PC MKS979 LL MKS979					
Control	Set Points	NK0070 UK + 0.00	Feedback	MKC070 LL-X C-th - d- D	
	1	0	MKS979 Device Type MP-HC 9798	MK5373 Hot Cathode Pressure	
	MKS979 DAC SP	MKS979 Hist 3 SP 0	MKS979 Firmware Version	MKS979 WRG Pressure	
OFF MKS979 Active Filament Power On	MKS979 Emission Current	MKS979 Cal Gas Type O	MKS979 Manufacturer MKS/HPS-PRODUCTS	MKS979 SP1 Value 1.00E+0	
OFF MKS979 Degas On	MKS979 Unit SP 0	MKS979 SP1 Direction	MKS979 Hardware Version Read from EE fail.	MKS979 SP2 Value 1.00E+0	
OFF MKS979 Enable Set Point1	MKS979 Set Point 1	MKS979 SP2 Direction	MKS979 Model 9798	MKS979 SP3 Value 1.00E+0	
OFF MKS979 Enable Set Point2	MKS979 Set Point 2 0	MKS979 SP3 Direction	MKS979 Serial Number 0625616594	MKS979 Hist1 Value 1.10E+0	Start Main
OFF MKS979 Enable Set Point3	MKS979 Set Point 3	MKS979 Gas Correction	MKS979 Transducer1 Temperature 3.80E+01	MKS979 Hist2 Value 1.10E+0	Process
OFF MY C079 Protect Cat Paint	MKS979 Hist 1 SP 0	MKS979 Scan Rate 3	MKS979 Transducer2 Temperature 3.800E+01	MKS979 Hist3 Value 1.10E+0	
	Emission Current Set Poin	its—	MK5979 Active Filament	MKS979 SP1 Direction Value BELOW	
OFF MKS979 Atmosphere Cal	1 = Auto 2 = 100UA DAC Set Point		MKS979 MicroPirani Pressure 8.00E+2	MKS979 SP2 Direction Value BELOW	
OFF MKS979 Vacuum Cal	1 = DAC1 2 = DAC2		MKS979 Gas Type Value NITROGEN	MKS979 SP3 Direction Value BELOW	
	0 = Torr 1 = mPAP			MKS979 Transducer Status	
OFF MKS979 Enable Control SP	2 = PASCAL		MKS979 Degas Status		
	Direction Set Points		MKS979 Filament Status MKS979 SP1 Enabled Status	MKS979 Time Un 399	
OFF MKS979 RS Delay SP	1 = ABOVE		MKS979 SP2 Enabled Status MKS979 SP3 Enabled Status	MKS979 Enable Control SP Status MKS979 Protect SP Status	
· · · · · · · · · · · · · · · · · · ·					
Operation System	Maintenance				Help

His software screen provides an interface allowing the user to communicate with the MKS979 gauge. Also see the component manual for additional details.

ICON OR DATA FIELD	Action	Result
Control On/Off OFF	Click to activate	Turns on and off the corresponding MKS979 control
Set Points MKS979 AF SP 1	Click to enter text	Communicates the value entered with the MKS979 gauge
Feedback MKS979 Device Type MP-HC 9798	No action	Provides feedback as to the status of the corresponding reading from the MKS979 gauge

SIGMA SCREEN

K 9.1E-8 7:38:16 AM 8/23/2006	Operation-Sigma	Copyright © 2006. Kurt	J. Lesker. ¥2.23 🛛 🗶
Kurt J. Lesker Company 0:00:05 Closed/Off		Exit Logout KJLC	ABORT
Version 2.23			
Vacuum Deposition Motion	Heating Cooling	Sigma	
- SQS-242	Crystal Status	Power and Source Map	
Sigma Launch 242 Sigma Simulation Mode OFF OFF Sigma Control Sigma Start Process OFF OK Sigma Stop Process OFF OK Sigma Zero All Thicknesses OFF OK Sigma Zero All Thicknesses OFF OK Sigma Control Request Sigma Control Request Sigma Control Request	Dep Rate (A/s) Dep Thick (KA) Xtal Q (Z) Crystal #1 0.0 0.000 95 Crystal #2 0.0 0.000 95 Crystal #3 0.0 0.000 95 Crystal #3 0.0 0.000 95 Crystal #4 0.0 0.000 95 Crystal #8	Dutput #1 0.0 1 Output #1 0.0 1 Output #2 0.0 2 7 = Ebeam Output #2 0.0 2 7 = Ebeam Output #3 0 1 16 = Pw/S 1-6 Output #3 0 12 7 = Ebeam 0 = Not Mapped Shutter Map 14 = Substrate 1-10 = Source Shutter 1-10 15 = Ion Source 11 = XTL 2 19 = Dual XTL1 17 = Evap 13 = XTL 3 20 = Dual XTL2 18 = XTL 4 Delay Shutter Mapping 1 Phase 0 1	Recipe Database
Sigma Process Name New Process		Sigma Deposit	
Sigma Film Name 06			
			Recording Start
Operation System			Help

CWare provides a basic interface for the Sigma controller. Refer to the Sigma manual for details regarding function and data set parameters.

ICON OR DATA FIELD	Action	RESULT
Sigma Launch 242 ON OFF	Click to activate	Initiates the Sigma deposition control software.
Sigma Simulation Mode ON OFF	Click to activate	Simulates Sigma processes in the absence of Sigma hardware.
Sigma Start/Stop Process ON OFF	Click to activate	Initiates the currently loaded Sigma process.
ON OFF	Click to activate	Zeros the Sigma thickness.
OK Indicator	Display only	Lights green when Sigma acknowledges communication with CWare

ICON OR DATA FIELD	ΑстιοΝ	RESULT
Power Supply Mapping PWS Mapping 1	Click to enter value	Map the power supply to the corresponding Sigma deposition source number. Example: If a "1" is entered, The Sigma process output Power setpoint will be transferred to the outpoint setpoint for KJLC deposition power supply #1.
Data Shutter Mapping Delay Shutter Mapping	Click to enter value	Map the desired shutter to the Sigma delay shutter control signal. Controls the opening and closing of the corresponding shutter. Shutter will open for the Shutter Delay and Deposit phases of the Sigma process only. This is typically used to map a source shutter.
Deposit Shutter Mapping Deposit Shutter Mapping	Click to enter value	Map the desired shutter to Sigma deposit control signal. Controls the opening and closing of the corresponding shutter. Shutter will open for the Deposit phase of the Sigma process only. This is typically used to map a substrate shutter.
Sigma Data Set Number	Click to enter value	Transfers the Sigma process setup associated with this number from the Recipe database to the Sigma software
Sigma Control Request New Process	Click to enter value	Loads the target process. Type the name of the process you want to run then Enter. If there is an associated process name in the Sigma software, this is the process that will run when you click on Sigma Start Process.
Sigma Last Message	Display only	Displays the last message sent to Cware from the Sigma software.
Sigma Process Name New Process	Display only	The current process is displayed.
Sigma Film Name	Display only	The Sigma specific name of the current file is displayed.

Refer to the *Sigma Data Sets* section and the Sigma manual for descriptions of additional icons included on the Operation – Sigma screen.

System

DISCRETE SCREEN

E+0 11:49:53 AM 8/4/2006			System-Discrete			rt J. Lesker. V2.19
t J. Lesker Company 0:00:01 Closed/Off ersion 2.19]			Exit	Logout KJLC Super User	ABORT
Discrete Analog Strin	ngs	Ethernet IO				
Discrete Outputs			Discrete Inputs			
Signal I	nitial Value	Signal Value	Signal	Signal State	Is Forced	
Gas Injection	0	0	Diff Pump Temperature Switch	0	False	Run Recipe
PC Turbo Backing Valve	0	0	PC Turbo At Speed	0	False	Start PC Pump
PC Turbo Vent Valve	0	0	PC Turbo No Fault	O	False	
ower Supply 1	0	0	Src1 Flow Switch	O	False	Start PC Vent
Roughing Pump	0	0	Substrate Heater Not Over Temp	O	False	
ource Shutter 1	0	0	Vacuum Sw PC	0	False	
Source Shutter 2	0	0				
Source SW1	0	0				
Source SW2	0	0				
Substrate Heater	0	0				Rotation Start
Substrate Heater Auto	0	0				
		Gene	rate Data Log	ates		Recording Star
peration System						Help

 $\overset{@}{ heta}$ This screen is primarily used for troubleshooting and selecting datalog items. It is recommended that operators other than the system administrator do not have access to this screen. Users can be denied access to this screen based upon their login parameters see the System Users Screen and the Security section of this manual.

ACAUTION

Failure to follow the proper preventative maintenance procedures could result in premature failure of the system or components.

A CAUTION Forcing discrete inputs can override interlocks. When system troubleshooting is complete, you must remember to reset (un-force) signals.

ICON OR DATA FIELD	Action	RESULT
Signal	Click to select or deselect	All Discrete Outputs and Inputs are listed in alphabetical order
Initial Value Initial Value	Display only	Displays the initial condition of the corresponding discrete output at system startup.
Signal Value Signal Value	Click to activate	Displays the actual current state of the corresponding discrete output. Clicking on the signal value will toggle its state and will also change the state of the corresponding equipment. For example clicking on the Gun2 shutter Signal Value is the same as clicking on the actual shutter indicator on the Operation – Deposition screen.
Signal State Signal State	Click to force signal	Displays the current state of the corresponding discrete input at system startup. Discrete inputs can be forced by clicking on the corresponding Signal State.
Is Forced Is Forced	Display only	Indicates whether or not the current signal is forced. False = Unforced signal True = Forced signal
Generate Data Log Generate Data Log	Click to activate	Generates a table in the folder C:\Program Files\Lesker\Company Name\Data\ Datalog.mdb. The table name is the date and time the table was created.
Suspend Screen Updates Suspend Screen Updates	Click to activate	Stops the constant screen update to allow the user to easily select signals to be forced.

ANALOG SCREEN

E+0 11:50:31 AM 8/4/2006		_			System-Analog			Copyright © 2006. Ku	ırt J. Lesker. ¥2.19
t J. Lesker Company 0:00:01 ersion 2.19	Open/On Closed/Off						Exit	Logout KJLC Super User	ABORT
Discrete Analog	Str	ings	Etherne	et IO					
Analog Outputs		-	-		Analog Inputs				
Signal	Initial Value	Signal Value	Units	-	Signal	Value	Units	Status	Recipe Databas
Cap Pres D	.05	.05			Capman Pressure	100.00	mTorr	Normal	Run Recipe
Cap Pres I	2	2			MFC Flow 1	000.1	SCCM	Normal	Start PC Pump
Cap Pres P	6	6			MFC Flow 2	000.0	SCCM	Normal	
Capman Pressure SP	0	0	mTorr		Power Supply1 Output Current	0.002	Amps	Normal	Start PC Vent
Capman Range	100	100	mTorr		Power Supply1 Output Power	0005	Watts	Normal	
MFC1 Correction Factor	1.39	1.39			Power Supply1 Output Voltage	0000	Volts	Normal	
MFC1 Gas	Ar	Ar			Substrate Heater Current	0.000	A	Normal	
MFC1 Mode	0	0			Substrate Heater Over Temp	23.0	deg C	Normal	
MFC1 Range	100	100			Substrate Heater Temperature	23.2	deg C	Normal	
MFC1 Ratio	50	50			Wide Range Gauge PC	0.0E+0	Ton	Normal	Rotation Start
MFC1 SP	0	0	SCCM	•					
				Generate (Data Log Suspe	nd Screen Upd	ates		Recording Star
)peration System	1								Help

This screen is primarily used for troubleshooting datalogging. It is recommended that operators other than the system administrator do not have access to this screen. Users can be denied access to this screen based upon their login parameters – see the System Users Screen and the Security section of this manual.

CAUTION Forcing analog inputs can override interlocks. When system troubleshooting is complete, you must remember to reset (un-force) signals.

ICON OR DATA FIELD	Action	RESULT
Signal ^{Signal}	Click to select or deselect	All Analog Outputs and Inputs are listed in alphabetical order
Outputs – Initial Value Initial Value	Display only	Displays the initial condition of the corresponding analog output at system startup or shutdown.
		Displays the actual current value of the corresponding analog output.
Outputs – Signal Value Signal Value	Click to activate	Clicking on the signal value will display an alphanumeric keypad that allows the signal value to be changed. This will also change the value of the corresponding equipment. For example changing the value of the MFC1 SP is the same as changing the set point on the Operation – Gas Screen.
Units Units	Display only	Displays the corresponding signal's unit of measurement.
Inputs – Value		Displays the current value of the corresponding analog inputs.
Vabie	Click to activate	Analog inputs can be forced by clicking on the associated Value for the corresponding signal. A pop up alphanumeric keypad is displayed for data entry.
Inputs – Status	Display only	Displays whether or not the current signal is forced.
Status	Display only	Forced = Corresponding signal is forced Normal = Corresponding signal is normal
Generate Data Log Generate Data Log	Click to activate	Generates a table in the folder C:\Program Files\Lesker\Company Name\Data\ Datalog.mdb. The table name is the date and time the table was created.
Suspend Screen Updates	Click to activate	Stops the constant screen update to allow the
Suspend Screen Updates		user to easily select signals to be forced.

STRINGS SCREEN

0.0E+0 11:50:57 AM 8/4/2006					Sys	tem-Strings			Co	pyright © 200	6. Kurt I	J. Lesker. V2.19
Version 2.19	Open/On Closed/Off								Exit	Logout K. Super U	JLC ser	ABORT
Discrete Analog	Str	ings	Etherne	t 10								
String Outputs					String I	nputs						
Signal	Initial Value	Signal Value	Units	-	Signal			Signal Value	Units	Status		Recipe Database
Mikron Pyrometer	0	0			Counter	rl		0		Normal		Run Recipe
PC Pfieffer Turbo Pump Controller	0	0	52	21	PC Pfie	ffer Turbo Spee	1	o	%	Normal		Start PC Pump
PC Pfieffer Turbo Pump On	0	0			Platen l	Motor Moving		o		Normal		
PC Pfieffer Turbo Pump Speed SP	0	0	%		Platen l	Motor Position		200.0	DEG	Normal		Start PC Vent
PC Pfieffer Turbo Pump Variable Sp	0	0			Platen l	Motor Reference	d	0		Normal		
Platen Motor	0	0			Platen l	Motor Velocity		0.0	RPM	Normal		
Platen Motor Acceleration	25	25	RPM/S/S									
Platen Motor D	550	550										
Platen Motor Direction	0	0										
Platen Motor Encoder Counts	2000	2000										Rotation Start
Platen Motor Gear Ratio	16	16		•								
				Generate	e Data Log		Suspend S	creen Updates	;			Hecording Start
Operation System												Help

This screen is primarily used for troubleshooting. It is recommended that operators other than the system administrator do not have access to this screen. Users can be denied access to this screen based upon their login parameters - see the System Users Screen and the Security section of this manual.

CAUTION Forcing string inputs can override interlocks. When system troubleshooting is complete, you must remember to reset (un-force) signals.

ICON OR DATA FIELD	Action	RESULT		
Signal ^{Signal}	Click to select or deselect	All String Outputs and Inputs are listed in alphabetical order		
Outputs – Initial Value Initial Value	Display only	Displays the initial condition of the corresponding string output at system startup or shutdown.		
		Displays the actual current value of the corresponding string output/input.		
Signal Value Signal Value	Click to activate	Clicking on the signal value will display an alphanumeric keypad that allows the signal value to be changed. This will also change the value of the corresponding equipment. For example changing the value of the Platen Motor Home Offset is the same as changing the set point on the Operation – Motion Screen.		
Units Units	Display only	Displays the corresponding signal's unit of measurement.		
Inputs – Status	Display only	Displays whether or not the current signal is forced.		
Status	Display only	Forced = corresponding signal is forced Normal = corresponding signal is normal		
Generate Data Log Generate Data Log	Click to activate	Generates a table in the folder C:\Program Files\Lesker\Company Name\Data\ Datalog.mdb. The table name is the date and time the table was created.		
Suspend Screen Updates Suspend Screen Updates	Click to activate	Stops the constant screen update to allow the user to easily select signals to be forced.		

ETHERNET I/O SCREEN

K 4.2E-8 12:02:59 PM 12/15/2005 System-Ether	net IO Copyright © 2005. Kurt	J. Lesker. V1.2
Kurt J. Lesker Running Time Open/On dd:hh:mm Closed/Off	Exit Logout KJLC Super User	ABORT
Discrete Analog Strings Ethernet 10		
- Connected To Ethernet		
Configuration		Recipe Database
	Connect	Run Recipe
	Read Data WriteData	Start PC Pump
	Base 0 Slot 0 Analog Data	Start PC Vent
		Start LL Pump
Status		Start LL Vent
Network initialized ok.		
	0	Start Transfer Wafer
	Clear Display	
		Recording Start
Operation System		Help

His screen contains information useful only to KJLC engineers and System Administrators. It is used in troubleshooting issues with Ethernet connections and modules.

RECIPE DATABASE

🔎 Re	cipes - [[Recipes]									_ 8 ×
==	😵 Help	Recip	oes 🐧 Recorded Data 🚵	Action Log 📝 Interlocks 🛄 Sigm	a Data Sel	s 🖛 Configur	ation 🍇 System U	lsers	Туре а	question for help	8 ×
Ne	w I	• •		• •	M S	how All	Sub Recipe 🔄	Dele	ete Export Al	Recipes to	XL
		Name	Abort AutoRegen	Owner	KJLC K.	LC				1	
Includ	le in VB	List 🗸	Operator Can Use 🔄 Pr	ocess Eng Can Use 📋 🛛 User	KJLC K.	LC	Update	VB	Reorder Items	Copy Rec	ipe.
	Seq	Type	Equipment	EquipmentItem		Equip	mentItemOperatio	n	Equipment/T	est Value	GRST
	i	-	Gauge	PC Regen Pirani		Turn_Off/Clos	sed/Closing				
	2	! -	Valve	PC Cryo Purge Valve		Turn_Off/Clos	sed/Closing				
	3	i -	Valve	PC Cryo Regen Valve		Turn_Off/Clos	sed/Closing				
	4	-	Valve	Source4 Gas		Turn_Off/Clos	sed/Closing				
*	0	-									
•											•

This screen provides the user with an interface for running and maintaining recipes. See the *CWare Operation* section for further instructions.

ICON OR DATA FIELD	ACTION	RESULT
New Recipe	Click to activate	Starts a new, blank recipe.
Navigation Button	Click to activate	Use these buttons to select the first, previous, last, or next recipe in the recipe list.
Drop Down Recipe List	Click to activate	Click the arrow to display a list of programmed recipes. You can then select one from the list by clicking on it.
Show All Show ALL	Click to activate	Toggles between Show All and Show Main and dictates what list of recipes will be shown in the Drop Down Recipe List box.
Sub Recipe	Click to activate	Checking this box will allow the chosen recipe to be used as a step in other recipes.
Delete Recipe Delete	Click to activate	Deletes the currently selected/displayed recipe.

ICON OR DATA FIELD	ΑстіоΝ	RESULT		
Export Recipes	Click to activate	Copies all recipes to C:\Program Files\Lesker\Customer Name\Excel Files\Recipe Sets.xls		
Update VB Update VB	Click to activate	Updates the list of available recipes that will be seen in the Runtime Software and updates changes to recipes in the Runtime Software.		
Reorder Items Reorder Items	Click to activate	Opens a new screen that allows the user to change the order of programmed commands.		
Copy Recipe Copy Recipe	Click to activate	Copies the selected recipe and prompts for a new name.		
Include in VB List Include in VB List 🗹	Click to activate	Check this box to include the selected recipe in the "Run a Recipe" menu.		
Operator Can Use Operator Can Use 🔄	Click to activate	Check this box to allow "Operators" to run the selected recipe.		
Process Engineer Can Use Process Eng Can Use	Click to activate	Check this box to allow "Process Engineers" to run the selected recipe.		
User <mark>User</mark> KJLC KJLC	Display only	Current logged in user of recipe		
Owner Owner KJLC KJLC	Display only	Original writer of selected recipe.		
GRST GRST	Click to enter value	G = Goto sequence number R = Ramp rate S = Skip T = Timeout		

REORDER ITEMS

	🔎 Recipes - [KJL]						_ 8 ×
	📑 🦿 Help 📑 R	tecipes 🐧 Recorded Data 🚵 /	action Log 📝 Interlocks 🛄 Sigma Dat	a Sets 🕶 Configurati	on 🛛 🍇 System Users	Type a question for help	- 8 ×
	Chose Item to MOVE			Chose Item to INSE	RT ABOVE		
Parmi	1 Gauge 2 Valve 3 Valve 4 Valve	PC Regen Pirani PC Cryo Purge Valve PC Cryo Regen Valve Source4 Gas	Turn_Off/Closed/Closing Turn_Off/Closed/Closing Turn_Off/Closed/Closing Turn_Off/Closed/Closing	1 Gauge 2 Valve 3 Valve 4 Valve	PC Regen Pirani PC Cryo Purge Valve PC Cryo Regen Valve Source4 Gas	Turn_Off/Closed/Closing Turn_Off/Closed/Closing Turn_Off/Closed/Closing Turn_Off/Closed/Closing	
	Return To Re	cipe	Re-Number	Move			

Use this screen to correct the order of steps in a saved recipe. To access this screen, click on *Reorder Items* on the *Recipe Screen*. See the *CWare Operation* section for further instructions.

ICON OR DATA FIELD	Action	RESULT		
Chose Item to Move Chose Item to MOVE	Click to activate	Click the step in the column on the left that needs to be moved.		
Chose Item to Insert Above Chose Item to INSERT ABOVE	Click to activate	Click the step in the column on the right that the chosen step from the left table needs to be placed before.		
Move Move	Click to activate	Moves the location of the step selected on the left.		
Re-Number Re-Number	Click to activate	Clicking this button corrects the numerical order of each command.		
Return to Recipe Return To Recipe	Click to activate	Click to return to the recipe screen.		

4	Recipes -	[Recorded Dat	:a]						- 8	x
8	😑 🦿 Help	Recipes	📏 Recorded Dat	a 📥 Act	ion Log 🖅 Interlo	:ks	🔢 Sigma Data Sets 🗪 Configuration & System Users	Type a question for help 👻	- 8	×
	Delete	Export	Start Time]	Stop Time		Description View	Delete Sigma Log Files		•
							test 1			
							test 2			
			1/17/2006 4:	40:11 PM	1/17/2006 4:40:1	12 PM	0601171640 (Sh= 0:00:00)			
1										
1										
1										
1										
1										
1										
1										
1										
1										
										-

RECORDED DATA

This screen displays recorded system data and provides the user with a means to maintain the data. See the *CWare Operation* section for further instructions.

ICON OR DATA FIELD	ACTION	RESULT
Delete Delete	Click to activate	Deletes the selected data set.
Export Export	Click to activate	Exports the selected data set to Excel.
Start Time	Display only	Shows the start time of the corresponding data set.
Stop Time	Display only	Shows the stop time of the corresponding data set.
Description Description test 1	Display only	Shows the unique system-generated name for a data set. This name can be edited by the user.
View View	Click to activate	Views the selected data set in the table format of an Access database.
Delete Sigma Log Files Delete Sigma Log Files	Click to activate	Deletes Sigma Log Files

? Help	Action and Ev	Recorded Data	🛯 Action Log 🛛 🛃 Ii	iterlocks 🛛 💷 Sigma Da	ata Sets 🛛 🖛 Configurat	ion 🏭 System Us	sers Type a question for help	
elete	Export		<u>, </u>					
	Perso	in	Logged In	Logged Out	Time Logged In	Num Recipes	Recipes Used	
	fw		3/27/2005 5:29:59 PM			5	Thermal 1 Al PC Vent PC Pump	
	fw		28/2005 10:20:04 AM			3	PC Pump Thermal 1 Al Abort Default	
	fw		28/2005 10:46:25 AM	_		0		
	fw		28/2005 10:48:43 AM	_	_	0		
	fw		28/2005 10:59:02 AM			0		
	fw		28/2005 11:00:13 AM	_	_	13	Thermal 1 Al Thermal 1 Al Thermal 1 Al	
	fw		3/29/2005 9:24:29 AM			0		
	fw		3/29/2005 9:40:16 AM			4	Ba pre-condition Ba pre-condition Interlock - Thermal Source 6 ON - Turn Water On	
	fw		29/2005 10:06:29 AM	_		12	Ba pre-condition Ba pre-condition Thermal 1 Al	
	fw		3/29/2005 2:19:41 PM			0		
	fw		3/29/2005 2:23:01 PM			0		
	fw		5/29/2005 2:24:12 PM			0		
	fw		3/29/2005 2:30:36 PM	_	_	0		-
	fw		3/29/2005 2:32:31 PM			2	Interlack - LLR Isolation Valve Onen - Ston the Rotatio	20

ACTION LOG

All user actions that have occurred since the last shut down can be viewed and maintained using this screen. See the *CWare Operation* section for further instructions.

ICON OR DATA FIELD	Action	RESULT
Delete Delete	Click to activate	Click to remove all entries in the Action Log
Export Export	Click to activate	Click to export a copy of all entries in the Action Log to C:\ProgramFiles\Lesker\Customer Name\Excelfiles
Person Person	Display only	Displays the login name of the person using the system for the corresponding login entry.
Logged In Logged In	Display only	Shows the date and time that the user logged into the system.
Logged Out Logged Out	Display only	Shows the date and time that the user logged out of the system.

ICON OR DATA FIELD	Action	RESULT
Time Logged In Time Logged In	Display only	Shows the elapsed time that the corresponding user was logged into the system.
Number of Recipes Num Recipes	Display only	Shows a count of the number of recipes that were used by the corresponding user login name.
Recipes Used Recipes Used	Display only	Lists the recipes that were used by the corresponding user login name.

INTERLOCKS

	Show ALL		•	Export Inte	rlocks to XL	
	Hide Skips			Update VB	Reorder Items	
Seq Type	Equipment	EquipmentItem	EquipmentIt	emOperation	Equipment/Test	t Value 🛛 🛛 🖓
1 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	LL iso valve cl	osed is active.
2 IF	Valve	LL Iso Valve Open	Turn_On/Open/Ope	ening		
3 IF	Valve	LL Iso Valve Close	Check_On/Open/O	pening		
4 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	LL iso valve	open is active.
5 IF	Valve	LL Iso Valve Close	Turn_On/Open/Ope	ening		
6 IF	Valve	LL Iso Valve Open	Check_On/Open/O	pening		
7 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	LL turbo vent	t valve is open.
8 -	Pump	LL Turbo Pump	Turn On/Open/Ope	ening		
9 IF	Valve	LL Turbo Vent	Check_On/Open/O	pening		
11 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	LL turbo backing v	alve is closed.
12 IF	Pump	LL Turbo Pump	Turn_On/Open/Ope	ening		
13 IF	Valve	LL Turbo Back	Check_Off/Closed/	Closing		
14 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	Roughi	ng pump is off.
15 IF	Pump	LL Turbo Pump	Turn On/Open/Ope	ening	-	
16 IF	Pump	Roughing Pump	Check_Off/Closed/	Closing		
17 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	Turbo backing	valve is open.
18 -	Valve	LL Turbo Vent	Turn_On/Open/Ope	ening		
19 IF	Valve	LL Turbo Back	Check On/Open/O	pening		
20 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	Turt	oo pump is on.
21 IF	Valve	LL Turbo Vent	Turn_On/Open/Ope	ening		
22 IF	Pump	LL Turbo Pump	Check_On/Open/O	pening		
23 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	Turt	oo pump is on.
24 IF	Valve	LL Turbo Back	Turn_Off/Closed/Cl	osing		
25 IF	Pump	LL Turbo Pump	Check_On/Open/O	pening		
26 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	LL turb	o vent is open.
27 IF	Valve	LL Turbo Back	Turn_On/Open/Ope	ening		
28 IF	Valve	LL Turbo Vent	Check_On/Open/O	pening		
29 -	Interlock	New Operation Only	000000000000000000000000000000000000000	00000000000	Purge	e valve is open.
30 IF	Valve	PC Cryo Regen Valve	Turn_On/Open/Ope	ening		
01 IE	Valua	DC Crus Durne Velue	Charle OniOnanio	Inanina		

This screen provides detailed information regarding interlocks. Only KJLC Engineers, or System Administrators under the direction of a KJLC Engineer, should change these interlocks. See *CWare Operation* for further instructions.

A CAUTION

Changes to this screen can damage equipment or cause injury to

system users.

ICON OR DATA FIELD	ACTION	RESULT
Show All Show ALL	Click to activate	Shows all interlocks.
Hide Skips Hide Skips	None	Reserved for future use.
Drop Down List	Click to activate	Choose a piece of equipment to see only the interlocks associated with that equipment.
Export Export Interlocks to XL	Click to activate	Exports the interlock data to an Excel spreadsheet.

ICON OR DATA FIELD	Action	RESULT
Update VB		Updates Visual Basic with any changes that
Update VB	Click to activate	have been made.
Reorder Items		Renumbers the steps after changes have been
Reorder Items	Click to activate	made

Kecipes - Esigina Data	a Sets J				
Help	Recorded Data	Action Log 🛛 🛃 Ir	nterlocks 🛄 Sigma I	Data Sets 🖛 Configuration 🍇 System Users	Type a question for help 👻 🗗
			<u>·</u> ·	Delete	
Expe	ort All Data	Sets to XL	Copy DataS	et Update VB View Material List	
lumber	Descript	Therma	L ALsubst	trate	Material List
					Main
	Material	AI		<u> </u>	C Full
Time values (marke	d *) can be ente	ered in Seconds e.g.	120, or as hh:mm:s	is e.g. 1:23:40	
Rise Time 1	() *	Card Output No	3	P (0-9999) 3	
Soak Power 1	0	Tooling Factor 1	50	I (0-99.9) 1	
Soak Time 1	0 *	Tooling Factor 2	150	D(0-99.9) 0.1	
Rise Time 2	0 *	Tooling Factor 3	100		
Soak Power 2	0	Tooling Factor 4	100	Process Name Al dual	
Soak Time 2	0 *	Tooling Factor 5	100	Layer No 1	
Shutter Delay	1	Tooling Factor 6	100	Film Name Al dual	
Accuracy %	5	Tooling Factor 7	100	Material Name Al dual	
Time Out secs	60	Tooling Factor 8	100	Layer Start Mode -	
				• Auto	
Idle Ramp	0			O Manual	
Idle Power	U *				
Deposition Rate	2	Sensor 1 Output	1 🗾	© lanore	
Final Thickness	999	Sensor 2 Output	3 -	O Stop Laver	
Thickness Spt	0	Sensor 3 Output	None	C Timed Power	
Density	2.7	Sensor 4 Output	None		
Z Ratio	1.08	Sensor 5 Output	None	Control Error	
Max Power	100	Sensor 6 Output	None	% 5	
Sample	U	Sensor 7 Output	None 🚬	sec 5	
Hold Time	*	Sensor 8 Output	None 🚬		

SIGMA DATA SETS

All Sigma Data settings can be viewed and maintained using this screen.

ICON OR DATA FIELD	ACTION	RESULT
New New	Click to activate	Creates a new data set.
Navigation Buttons	Click to activate	Use these buttons to select the first, previous, last, or next data set.
Delete Delete	Click to activate	Deletes the selected data set.
Export to Excel	Click to activate	Exports the selected data set to Excel.
Copy Dataset Copy DataSet	Click to activate	Creates a copy of the selected data set.
Update VB Update VB	Click to activate	Updates Visual Basic with any changes that have been made.

CONFIGURATION

🔎 Recij	pes - [Configura	ation]						_ 8	×
💡 Help	Recipes	📏 Recorded Data 📤 Action	Log 🖅 II	nterlocks 🧾 Sigma Data Sets	← Configuration	🕵 System Users	Type a question for help	- 8	×
Impo	ort Interlock	tems			Update VB	Import Recipe:		•	-
	Use	Name	Numeric	String		Import Sigma Data`Set		•	
	×	ChamberPressureTrip	0						
	▼	CryoCold	40			ĺ			
	~	CryoHot	288						
		CryoHysteresis	3			ĺ			
		CryoRegenPressureTrip	0			ĺ			
		CryoRoughingPressureTrij	0						
	▼	DepositHeightHigh	140						
	V	DepositHeightLow	0						
	V	HeadingSpaces	230	Number of Spaces in heading		J			
	V	InterlocksEnabled	1	1= enabled. 0= disabled					
		RecordingRateDefault	5						
	V	RecordingRateMinimum	5						
	V	Sigma	1			ĺ			
	V	SystemType	0	USA		ĺ			
		UKIOCard1710	1	16 ch Analog IP 2 ch Analog C	IP	ĺ			
	V	UKIOCard7230	3	16 ch DI/DO		ĺ			
	V	UKIOCardMoxa	1	8 ch RS232					
		UKIOCardSigma	2	FTM		ĺ			
		BakeOutAbort	50	abort Bakeout if temp < n		ĺ			
		BaratronPressureTrip	0			ĺ			
		CaesiumOPScaling0	0.01	35					
		CaesiumOPScaling1	0.02	45					
		CaesiumOPScaling2	0.03	65					
		DCHuttingerDCPowerLimi	0			l l			•

This screen contains important setup information that affects and enables computer control of the system. The only field that customers should change is the *RecordingRateDefault*. Changes to any other data on this screen should only be made by KJLC Engineers or under the guidance of a KJLC Engineer.

ICON OR DATA FIELD	Action	RESULT
Recording Rate Default	Click to enter	Enter the rate (in seconds) at which the
RecordingRateDefault 5	value	computer should record system data.

System Users

🖉 Recipes - [System Use	rs]			
💡 Help 🛛 🔝 Recipes 🛛 🔌	Recorded Data 🛛 🎦 Action Log 🛛 🖅 I	nterlocks 🧾 Sigma Data Sets 🖛 Co	nfiguration 🍇 System Users	Type a question for help 🛛 🗸 🗗 🗙
To set a n The password To reset a	Find Existing System User	letails. hey log on. nt one		
	New User	Recipe Database Access		VB Other Access
User Log-in Name	KJLC	Recipes	☑ Operation	🔽 Operate if Running Recipe
SurName	KJLC	🗷 Recorded Data	I System	🗹 Can change ANY recipe
First Name	KJLC	☑ Action Log		
Initials (max 3)	KJL	☑ Interlocks		
Start Form	Recipes	🗵 Sigma Data Sets		
		Configuration		Coperator
Password				Process Engineer
	Clear Password	System Users		🗹 Super User
	Delete User			

This chart defines icons and buttons found on the System Users Screen.

ICON OR DATA FIELD	Αςτιον	Result
Find Find Existing System User ▼	Click to activate	This field displays a list of all users with access to the system software in drop- down menu format.
New User New User	Click to activate	Click this button to create a new software user using the appropriate boxes below.
LOg-in User Log-in Name <mark>KJLC</mark>	Click to activate	Enter a user's log-in name to log in.
SurName (Last Name)	Click to activate	Enter the user's last name in this field.
First Name First Name KJLC	Click to activate	Enter the user's first name in this field.
Initials Initials (max 3) KJL	Click to activate	Enter the user's initials in this field.

ICON OR DATA FIELD	Action	RESULT
Start Form Start Form Recipes	Click to activate	Use this drop down list to choose which screen / form should be the opening screen for the selected user.
Password Password	Click to activate	Enter the password for the selected user.
Clear Password Clear Password	Click to activate	Removes the existing password for the selected user.
Delete User Delete User	Click to activate	Deletes the selected username.
Recipe Database Access Recipes Image: Recorded Data Image: Recorded Data	Click to activate	Use this list of checkboxes to assign availability of the System Database screens to the selected user.
VB Mainform Access	Click to activate	Use this list of checkboxes to assign availability of the Runtime Software screens to the selected user.

ICON OR DATA FIELD	ΑстιοΝ	Result
VB Other Access VB Other Access Operate if Running Recipe Can change ANY recipe Operator Process Engineer Super User	Click to activate	Use this list of checkboxes to assign availability of software screens to the selected user. Operate if Running Recipe = Allows the user to operate heaters/shutters on the runtime software screens while a recipe is running Can change ANY recipe = Can amend any recipe, even if the user does not own it. Operator = The user can only run recipes assigned to Operators Process Engineer = The user can only run recipes assigned to Process Engineers Super User = The user can run/amend any recipe

CWARE STARTUP

 $\overset{(l)}{ extsf{W}}$ Please review the General Information & Definitions Sections thoroughly prior to operating the system via CWare.

This section provides general information on how to operate the system using the computer interface. Please modify these procedures as necessary to conform to your specific needs.

The system computer is configured to automatically start KJLC software every time it boots up. Additionally, if the Runtime software has been stopped for maintenance purposes, it can be restarted by double-clicking the software icon on the Windows desktop.

Before starting the software or booting the computer, it is generally a good idea to verify the appropriate system components are on and in the correct state (i.e. power supplies on, cryo compressors/turbo controllers on, gauge controller on, etc.). Additionally, all gauges should be turned off manually on the system's vacuum gauge controller (if applicable) prior to starting system software (this is to prevent priority conflicts and communication errors between the gauge controller and the system control software).

The Operation – Vacuum Screen is typically the first screen to appear:

At system startup, the *Login/Logout Button* is in a "Login Here" state. Clicking on this button will display the dialog box shown here:

🕻 Login/ Logout	×
Please key in Login Name and press Enter	
KJLC	
Please key in Password and press Enter	
OK Cancel	

LOGIN/LOGOUT DIALOG BOX

- 1) Type your user name in the upper window. Then use the mouse to set the cursor in the password window. Type your password and press the enter key on the keyboard. The "OK" button will then appear.
- 2) Click "OK" or press the enter key on the keyboard. The dialog box will disappear and the Login/Logout button will now display the "username" and the security access level of the logged in user.
- 3) At this point, basic system operation is available to the user pumping, venting, sample loading/unloading, process selection, and process execution. It is usually a good idea to pumpdown the system upon startup (unless the system has a cryo pump that requires regeneration, in which case pumpdown initiation must wait until the pump is ready). Running the standard PC Pumpdown process puts the system into a known state that is typically desirable before selecting and running a deposition process.

Prior to running any process, assure that all system connections have been properly made and all related documentation has been reviewed.

Refer to the *Overview & Definitions* section of *Software Operation* for details regarding the function of Icons and Command Button processes.

STANDARD RECIPES

A recipe is a collection of commands that can be used to perform a set routine. Many recipes are pre-programmed for customers. These programmed recipes can be modified, or copied then modified to suit your specific application. The standard recipes involve basic functions such as abort routines, pumping, venting, testing, wafer transfer, etc. Use the *Recipe Database* screen to view or modify the steps in a recipe.

RUNNING RECIPES

A list of available recipes is displayed by pressing the *Run Recipe* button from any *Runtime Engine* screen. Recipe details can also be viewed from the *Recipe* screen of the *System Database*. The list of available recipes is limited by the access level of the logged in user and if the *Include in VB List* box is checked. See *System Users* and *Recipes* screens in the *Overview & Definitions* section for further details.

Skipping certain steps may cause damage to equipment and is done so at the operator's own risk.

To run a recipe from the *Runtime Software* screens:

1) Click the *Run Recipe* command button found on the right side of any *Runtime Software* screen.

STANDARD RECIPES

2) Select the desired recipe from the list with a single left-click of the mouse. A green box appears below the list just above the Cancel button.

- 3) Click the green box to start running the recipe. Clicking Cancel will close the *Run Recipe* pop up box.
- 4) When the recipe starts, a dialog box will appear. The top half displays the recipe name and step number. The bottom half displays the current action of the running recipe.

Running Recipe CounterTest (4)
WAITING FOR Counter1 Check Value > 9.0 2
Hide until next item

RECIPE DIALOG BOX

5) The recipe can be aborted at any time by right-clicking the top half (dark red) and selecting abort. This will run the Abort Default recipe or the Abort recipe assigned to the recipe. (See *Standard Recipes*).

PVD 75

WRITING RECIPES

- 1) On the *Recipe* screen, click New in the upper left corner.
- 2) Type a name in the white box next to *Name*.
- 3) Check the *Include in VB List* box so that the recipe will be available from the *Runtime Software*.
- 4) Click on row 0 in the *Equipment* column, and then select an equipment option from the drop down menu.
- 5) Tab to, or click on the *EquipmentItem* column and select an option from the drop down menu. The contents of this drop down menu are dependent upon the chosen equipment from step 4 above.
- 6) Tab to, or click on the EquipmentItemOperation column and choose the desired action.
- 7) In the last column, *Equipment/Test Value*, enter the time or pressure relevant to the chosen action.
- 8) The column labeled *GRST* allows for <u>G</u>oto sequence number, <u>R</u>amp rate, <u>Skip</u>, or <u>T</u>imeout steps
- 9) Repeat steps 1 through 8 for each recipe step. You cannot move to the next recipe step until the current one is complete.
- 10) When all steps of the recipe are complete, click on the *Update VB* button to save the recipe. This will make the recipe appear on the *Run Recipe* list from the *Runtime Software* screens.

Recipe GoTo on Fail:
 Goto Sequence No if 999 (999 = Abort if Timeout)
 Timeout

IF THIS BOX CONTAINS:	THEN:	
999 and there is an abort recipe in	The user defined abort recipe in step	
step 1 of the recipe	1 will run	
999 and there is not an abort recipe	The "Abort Default" recipe will run	
in step 1 of the recipe		
A user defined valid recipe step	It goes to the step number indicated	
number		
"0" or is blank	A Timeout Message Box will appear	

MODIFYING RECIPES

Any saved recipe can be modified. It is strongly suggested that you copy a recipe and modify the copy using a new recipe name. If you need the original recipe, it will still be saved as it was before you started.

When modifications are complete, you must click Update VB for the changes to be applied in the Runtime Software.

To change the order of the steps in a recipe:

- 1) Use the navigation buttons on the Recipe Database screen to choose the recipe to edit.
- 2) On the Recipe Database screen, click the Reorder Items button.
- 3) On the left side of the screen, click the recipe step that needs to be moved.
- 4) On the right side of the screen, click the recipe step that the chosen step on the left needs to be placed BEFORE.
- 5) Click the Move button. Both lists display the changed order and the steps have renumbered automatically.
- 6) Click the Return to Recipe button to return to the main Recipe Database screen.

To **delete** a step in a recipe:

- 1) Use the navigation buttons on the Recipe Database screen to choose the recipe to edit.
- 2) Left-click in the leftmost block next to the step number of the recipe step you wish to delete the entire row should be highlighted black.
- 3) Press the Delete Key on the keyboard.
- 4) The sequence number for the deleted step is now missing. If you wish to renumber the remaining steps, use the Reorder Items button, then press the Re-Number button.

To **add** a step to a recipe:

- 1) Use the navigation buttons on the *Recipe Database* screen to choose the recipe to edit.
- 2) You must first add the step AFTER all of the other steps in the recipe.
- 3) When the required step is complete, follow the steps above labeled "change the order of the steps in the recipe" to place the new step in its proper position.

IMPORTING RECIPES

- 1) Copy the RecipeD.mdb file from the source system to your C:\Program Files\Lesker directory.
- 2) Start the system and access the recipe database.
- 3) Select configuration.
- 4) Click on the Import Recipe drop down box.
- 5) Select the recipe to import by clicking on it.
- 6) You will be prompted to accept the import.
- 7) Click on OK.
- 8) The new recipe is imported to your system.
- 9) Click the *Update VB* button.

RECORDING **D**ATA

- 1) Click on the *Recording Start* button near the lower right corner of any Runtime Engine screen. The caption of this button will change to *Recording Stop* and it will illuminate green each time data is written. Clicking it again will stop recording data.
- 2) Recorded data is saved in a Microsoft Database format. The file path is: C:\Program Files\Lesker*Customer Name*\Data\RecordingD.mdb
- 3) The data is saved in a table named tblRecordingData.
- 4) Data can be accessed by opening the database using Microsoft Access and then double clicking the table file.
- 5) The first two fields in this table are generated by the software for system use. The remaining fields are the recorded system signals including a Date/Time stamp.
- 6) Data can be exported or extracted using Microsoft Access Tools.
DATA LOGGING SIGNALS

- 1) Navigate to the System Screen. You can select signals to Data Log from the Discrete, Analog, or String screens.
- 2) Click the Suspend Screen Updates.

System-Strings	System-Strings Copyright © 2009. Kurt J. Lesker. V4.33124								
Kurt J. Lesker Company Version 4.33124	Kurt J. Lesker Running Time Upen/Un 2:21:41:12 Closed/Off								
Discrete Analog	Strings	Ethe	rnet IO						
String Outputs	_ ·			String Inputs					
Signal	Initial Value Sign	al Value Units	-	Signal	Signal Value	Units	Status		
MKS979 AF SP	1	1		MKS979 SP3 Direction Value	BELOW		Normal		
MKS979 Atmosphere Cal	0	0		MKS979 SP3 Enabled Status	0		Normal		
MKS979 Auto Initialize	0	0		MKS979 SP3 Value	1.00E+0		Normal		
MKS979 Cal Gas Type	0	o		MKS979 Time On	258		Normal		
MKS979 DAC SP	0	o		MKS979 Transducer Status	Hot cathode (Normal		
MKS979 Degas On	0	o		MKS979 Transducerl Temperature	2.89E+01		Normal		
MKS979 Emission Current	1	1		MKS979 Transducer2 Temperature	5.000E+00		Normal		
MKS979 Enable Control SP	0	1		MKS979 WRG Pressure	UNDER	Ton	Normal		
MKS979 Enable Set Point1	0	o		Platen Motor Errors	0		Normal		
MKS979 Enable Set Point2	0	o		Platen Motor Moving	0		Normal		
MKS979 Enable Set Point3	0	O	-	Platen Motor Referenced	0		Normal		
	Generate Data Log Suspend Screen Updates								
Operation System	-			UNDER					

DATALOG SCREEN #1

<mark>K</mark> System	n-Strings			Соругі	ght © 200	19. Kurt J. Lesker. V4.33124				×
Kurt J.	Lesker Company 4 33124	Open/On Closed/Off						Exit	Logout KJLC Super User	ABORT
Discre	ete Analog	Str	ings	Ethernet	10					
String	ng Outputs					String Inputs				
Signa	al	Initial Value	Signal Value	Units		Signal	Signal Value	Units	Status	
MKS	S979 AF SP	1	1			MKS979 SP3 Direction Value	BELOW		Normal	
MKS	8979 Atmosphere Cal	0	0			MKS979 SP3 Enabled Status	0		Normal	
MKS	8979 Auto Initialize	0	0			MKS979 SP3 Value	1.00E+0		Normal	
MKS	S979 Cal Gas Type	0	0			MKS979 Time On	258		Normal	
MKS	S979 DAC SP	0	0			MKS979 Transducer Status	Hot cathode o		Normal	
мкз	8979 Degas On	0	0			MKS979 Transducer1 Temperature	2.89E+01		Normal	
мкз	8979 Emission Current	1	1			MKS979 Transducer2 Temperature	5.000E+00		Normal	
мкз	S979 Enable Control SP	0	1			MKS979 WRG Pressure	UNDER	Torr	Normal	
MKS	S979 Enable Set Point1	0	0			Platen Motor Errors	0		Normal	
MKS	8979 Enable Set Point2	0	0			Platen Motor Moving	0		Normal	
MKS	8979 Enable Set Point3	0	0		•	Platen Motor Referenced	0		Normal	
				_	Generate D	ata Log Suzpend	Screen Update:	•		
Opera	Operation System									

3) Highlight the signal names that you would like to Data Log.

DATALOG SCREEN #2

Burning Time Open/On 2:21:42:22 Closed/Off								ABORT		
Discrete Analog	St	ings	Ethernet IO							
String Outputs				-	String Inputs				_	
Signal	Initial Value	Signal Value	Units		Signal	Signal Value	Units	Status	_	
MKS979 AF SP	1	1			MKS979 SP3 Direction Value	BELOW		Normal		
MKS979 Atmosphere Cal	0	0			MKS979 SP3 Enabled Status	0		Normal		
MKS979 Auto Initialize	0	0			MKS979 SP3 Value	1.00E+0		Normal		
MKS979 Cal Gas Type	0	0			MKS979 Time On	258		Normal		
MKS979 DAC SP	0	0			MKS979 Transducer Status	Hot cathode (Normal		
MKS979 Degas On	0	0			MKS979 Transducerl Temperature	2.89E+01		Normal		
MKS979 Emission Current	1	1			MKS979 Transducer2 Temperature	2.530E+02		Normal		
MKS979 Enable Control SP	0	1			MKS979 WRG Pressure	UNDER	Torr	Normal		
MKS979 Enable Set Point1	0	0			Platen Motor Errors	0		Normal		
MKS979 Enable Set Point2	O	O			Platen Motor Moving	0		Normal		
MKS979 Enable Set Point3	0	0		·	Platen Motor Referenced	0		Normal	•	
Generate Data Log Suspend Screen Updates										
Operation Sustem	-1			L	INDER					

4) Click Suspend Screen Updates to deactivate.

DATALOG SCREEN #3

It is important to highlight/suspend again (to deactivate). Otherwise, two instances of the same data will be created due to scan time. This will confuse the Datalog and cause an error.

NOTE: The same protocol **must** be followed for each screen or tab (Click Suspend Screen Updates, highlight signal names to Data Log, and click Suspend Screen Updates to deactivate). Otherwise, only the screen that action is performed on will Datalog.

5) Once all components are selected for datalogging through the various screens, click Generate Data Log.

Bunning Time Open/On 2:21:42:46 Closed/Off								АВОГ
Discrete Analog	Stri	ngs	Ethernet IO					
String Outputs				String Inputs				
Signal	Initial Value	Signal Value	Units	Signal	Signal Value	Units	Status	
MKS979 AF SP	1	1		MKS979 SP3 Direction Value	BELOW		Normal	
MKS979 Atmosphere Cal	0	0		MKS979 SP3 Enabled Status	0		Normal	
MKS979 Auto Initialize	0	0		MKS979 SP3 Value	1.00E+0		Normal	
MKS979 Cal Gas Type	0	0		MKS979 Time On	258		Normal	
MKS979 DAC SP	0	0		MKS979 Transducer Status	Hot cathode (Normal	
MKS979 Degas On	0	0		MKS979 Transducerl Temperature	2.89E+01		Normal	
MKS979 Emission Current	1	1		MKS979 Transducer2 Temperature	2.370E+02		Normal	
MKS979 Enable Control SP	0	1		MKS979 WRG Pressure	UNDER	Torr	Normal	
MKS979 Enable Set Point1	0	0		Platen Motor Errors	0		Normal	
MKS979 Enable Set Point2	0	0		Platen Motor Moving	0		Normal	
MKS979 Enable Set Point3	0	0		Platen Motor Referenced	0		Normal	
			Gene	rate Data Log Suspend S	creen Updates	:		
Operation System	7			UNDER				

DATA LOG SCREEN #4

K Operation-Vacuum	Copyright © 2009. Kurt J. Lesker. V4.33124	×
Kurt J. Lesker Running Time Open/On Version 4.33124 Closed/Off	Exit Logout Super L	KJLC Jser ABORT
Vacuum Deposition Gas	Cooling Platen Motion KJLC S	379
	PC PC Vert Valve PC Cryo Temperature Regen Pressure VAC ImprK PRNImT or 003 24E3 PC High Vac Valve OPEN OUNDER CLOSED DEGAS FILMINT OFF OPEN Gas Injection PC Cryo Regen Valve	OFF Run Recipe Start PC Pump Start PC Vent
	PC Roughing Valve	
	PRIVIT or 8 85 40 Roughing Put	mp
Operation System	UNDER	
	DATA LOG SCREEN #5	

6) Click Recording Start to begin recording. Data will be recorded at the specified number of seconds.

To change the specified data collection rate:

- Click Configuration through the Recipe Database button (<u>NOTE</u>: This may already be open and located on the bottom toolbar and cannot be closed, only minimized. Closing it will cause it to automatically "reopen").
- Recording Rate Default **AND** Recording Rate Minimum should be set to the same time interval. The data collection interval can be changed at this point, ensuring that the Recording rate default **AND** Recording rate minimum are the same.
- 5 seconds is *typically* the fastest rate desired for scanning. One second intervals are possible; however, data logging uses considerable space and processor speed.
- Data log will continue to run until Recording Stop is depressed
- Entries have a time/date stamp

After data logging is stopped:

- 1) Go to "C" drive
- 2) Go to Program files
- 3) Go to Lesker
- 4) Go to Company name (XYZ)
- 5) Go to Data
- 6) Go to Datalog.mdb

The table name is the date and time the table was created.

- Data log puts the logged information into "cells".
- These cells can be saved as an Excel file to make graphs, etc.

This should only need done once at the beginning to clean out old signals or if there is an error caused by two of the same line item.

It is imperative to click Data Log before clicking the Record Start and Record Stop. If Data log is not clicked first the data will only APPEND to the last table. Next, click Generate Data log to create a new table.

The Datalog.mdb file will not open from its current location when the Cware software is up. In order to view the data log files while Cware is operating, the user must copy (not cut) the entire datalog.mdb file and place it in another location (for example, in My Documents), to open the file and gain access to the tables.

SHUTDOWN

Pressing the Exit button at the top right of any Runtime Software screen will close both the Runtime Software and the System Database.

Exit

 ${\ensuremath{\stackrel{@}{=}}}$ If running Sigma, shut Cware down first and then Sigma.

MAINTENANCE

PERSONNEL QUALIFICATIONS

All personnel performing maintenance procedures must have appropriate training.

Vendor supplied instructions and operator manuals should be reviewed prior to maintenance or operation of any equipment or hardware.

GENERAL RECOMMENDATIONS

- 1) Prior to the installation of any assembly, it is good practice to review the list of parts and ensure all parts are on hand.
- 2) Prior to installation of any copper gasket or o-ring, ensure the gasket, o-ring and sealing surface are free from defects and debris.
- 3) Wipe all gaskets and flanges clean with isopropyl alcohol prior to installation to assure cleanliness.
- 4) When applying vacuum grease to an o-ring, be cautious not to apply too liberally. A thin even film is sufficient.
- 5) Prior to tightening any QF or Conflat type flanges, ensure that the o-ring or metal gasket is centered and seated properly.
- 6) When assembling, be sure to use proper vacuum cleanliness techniques (i.e. wearing clean gloves, hair nets and beard masks and using lint free wipes).
- 7) Use a non-stick lubricant (such as Molybdenum mixed with isopropyl alcohol) on all stainless steel to stainless steel hardware mounting. For internal mounting, only a vacuum compatible lubricant (such as Boron Nitride) should be used.
- 8) Supplemental Manuals and Information should be reviewed prior to installation or operation of any equipment or hardware.

MAINTENANCE MATERIALS AND ACCESSORIES

Ітем	DESCRIPTION				
ELECTRICA	LASSEMBLY				
Wire Stripper	Sizes: 8 – 22 AWG				
Wire Cutters	Precision and heavy duty				
Terminal Crimper	Sizes: 22 - 10 AWG				
Precision Screwdrivers	Standard				
MECHANICAL ASSEMBLY					
SAE Socket Set	Sizes: 1/4 inch – 3/4 inch				
Metric Socket Set	Sizes: 6 mm – 17 mm				
Ratchets	1/4 inch & 3/8 inch				
Ratchet Extensions	1/4 inch & 3/8 inch				
SAE Wrench Set	Sizes: 1/4 inch – 3/4 inch				
Metric Wrench Set	Sizes: 6 mm – 17 mm				
Adjustable Wrench	Small & Large				
Phillips Head Screwdriver	#1 & #2				
Slotted Screwdriver	#1 & #2				
SAE Hex Key Set	1/16 inch – 3/8 inch				
Metric Hex Key Set	1.5 mm – 10 mm				
Slip-Joint Pliers	Standard				
Tube Cutter (Metal & Plastic)	1/4 inch – 3/8 inch				
Recommen	DED SUPPLIES				
Isopropyl Alcohol	Used for final cleaning				
Acetone	Used for initial degreasing				
Alconox	Vacuum cleaning solution				
Alpha Wipes	Lint free wipes				
Molybdenum Disulfide	Used for lubrication of hardware				
Vacuum Grease	Used on o-rings to ensure proper seal				
Boron Nitride	High temperature lubricant				

Please contact the Kurt J. Lesker Company for ordering information.

COMPONENT PREVENTATIVE MAINTENANCE

The individual component manufacturer's recommended preventative maintenance schedules should be reviewed and followed.

A CAUTION

Failure to follow the proper preventative maintenance procedures could result in premature failure of the system or components.

🛕 DANGER

Many of the referenced maintenance procedures have safety dangers, warnings, cautions, and notes associated with them. Read all procedure references and observe all safety measures.

COMPONENT REPAIR/REPLACEMENT

For repair or replacement of specific components, see appropriate schematics and operation manuals. These procedures are associated with features critical to proper system function. In-house performance of component repair or replacement during the warranty period without direction or approval from KJLC Systems Support can result in termination of the warranty.

If an authorized KJLC service representative suggests that a system component be returned to KJLC, a Return Material Authorization (RMA) number must be issued. The RMA number expedites handling and ensures proper service of the equipment.

PROCESS CHAMBER CLEANING

The chamber and internal shielding should be cleaned regularly to remove contaminants and particulates which can affect vacuum integrity and process performance. The user should review the system periodically and perform duties as required to set up a scheduled preventative maintenance procedure.

If required, a recommended cleaning procedure can be supplied by an authorized KJLC representative.

A CAUTION

Care should be taken to assure that cleaning agents and cleaning procedures do not form a negative reaction with the materials used in the deposition chamber. Refer to MSDS for handling instructions. Run-off from deposition component cleaning may be poisonous and requires appropriate disposal.

 $\overset{\mbox{eff}}{=}$ As part of the preventative maintenance of the system, all heater bulbs and their connections should be inspected periodically.

PREVENTATIVE MAINTENANCE SCHEDULE

Maintaining your system according to the schedules and procedures given in this document will help to keep your system operation trouble-free while preserving your investment. When your system needs maintenance, your service representative is specially trained in customer service and providing technical support for your unique system. The following information should be used when customer service is required:

North America Phone: 800-245-1656, ext. 7311 or 7557 Fax: 412-384-2745 E-mail: systemscustomerservice@lesker.com

Europe Phone: +44 1424-458100 Fax: +44 1424-458103 E-mail: systemcustomerserviceeu@lesker.com

Asia Phone: 01186-21-50115900 Fax: 01186-21-50115863 Email: systemscustomerservicecn@lesker.com

For all other regions, contact North America customer service.

Actual maintenance intervals may vary depending on tool use. The schedules and procedures in this document are based on projected normal usage and are intended as supplemental information and are to be used as reference ONLY. Where applicable, the individual component manuals should be reviewed for vendor recommended service intervals and procedures. Not all components listed in this schedule may be included on your system.

Many of the referenced maintenance procedures have safety dangers, warnings, cautions, and notes associated with them. Read all procedure references and observe all safety measures.

Any interlocks that may have been overridden must be set back to their operational state. Failure to do so may result in component failure or personnel injury.

Any personnel performing preventative maintenance functions must be properly trained on all aspects of the tools operation and safety requirements. Engineering schematics should be referenced for proper assembly.

The manufacturer reserves the right, however, to discontinue or change specifications or design at any time without notice and without incurring any obligation whatsoever. The information and specifications included in this publication were in affect at the time of approval for printing.

SOFTWARE MAINTENANCE

Ітем	DESCRIPTION	Procedure				
Datalog		 Open the recipe database and locate recorded data via the top tabs. 				
		2) Select the data that you wish to remove from the database and place it into storage by selecting the checkbox.				
	As the machine operates, the data log information stored in the database will continue to grow. The database file size should not exceed 2 gb. Offload data as	3) Select "EXPORT" to put these files into an Excel spreadsheet and place them in "C:\Program Files\Lesker\PVD75\ExcelFiles				
	necessary to maintain a database file size less than 2 gb.	 Delete unwanted recorded data by selecting the check boxes and selecting "DELETE" 				
		5) Locate the Action Log tab				
		6) Export the Action Log to a separate file. All files not deleted in Item 4 will be copied to your new location.				
		7) Delete the original Action Log from the system PC.				
Compacting	There are 3 main logging databases. They are RecipeD, RecordingD, and LogD. These databases will grow in size over time and	 Open the Compact database located at "C:\Program Files\Lesker\PVD75\Data" 				
	basis. When the size of the database reaches 80 mb, a compact procedure must be performed.	2) Select the database you wish to compact.				

Inspected by: _____ Date:_____

AUTHORIZED SIGNATURE

MAINTENANCE UPON VENTING

ALL MODULES						
COMPONENT	INSPECT FOR	Comments				
Deposition Shielding/ Shutters	Deposition build-up or flaking	Bead blast to remove build-up, vacuum wash and dry thoroughly				
Platen Assembly	Deposition build-up or flaking on substrate and mask shelves	Bead blast to remove build-up, vacuum wash and dry thoroughly				
	Loose cassette clamping bolts	Assure proper alignment and tighten				
Chamber Internals	Cleanliness, debris or particulate.	Remove all particulate and wipe internals with isopropyl alcohol and lint free wipes. If any internals require additional bead blasting or mechanical cleaning, those parts must be properly vacuum washed and dried prior to re-installation.				
O-rings/ Sealing Surfaces	Scratches, particulate or wear	Replace cracked or damaged O- rings. Remove contaminated O- rings and clean with isopropyl alcohol and grease with Payson L vacuum grease. Marred sealing surfaces must be corrected via the appropriate mechanical means, such as hand polishing or machine resurfacing.				
Bake out and	Broken or coated bulbs	Replace bulb				
Illumination Lamps	Conductive coatings on the ceramic insulators. If coated with a conductive film, the bulbs can short out.	Replace ceramic insulators				

ALL MODULES							
Component	INSPECT FOR	Comments					
	Manufacturer's recommended maintenance	Refer to manufacturer's manual					
Film Thickness Monitors Film Thickness Monitors (continued)	Securely inserted crystals and proper crystal sensing. It is recommended to replace the crystal when <30% of its life is reached.	If no signal is being displayed then check continuity of the cable and the oscillator. Replace crystal.					
	Deposition build-up or flaking on shutters	Bead blast to remove build-up, vacuum wash and dry thoroughly					
	Proper shutter operation	Check to ensure shutter operates smoothly over its full range of motion. In the open position, no portion of the crystal should be covered.					
	Inspect for proper crystal material. Deposition of certain materials may require use of certain types of crystals.	Refer to manufacturer's manual					
Chamber Isolation Valve	Any pressure rise in an adjacent chamber upon venting another chamber. Rising pressure in an adjacent chamber could indicate a leak across the valve.	Clean the sealing surfaces and clean or replace the seal.					
Cassette Stages	Z-shift connection	Assure proper alignment and tighten					
	Smooth rotation in directions of travel	Clean all motion surfaces. If this does not correct the problem, the guide shaft may be distorted or the guide bushing may need to be replaced.					

ALL MODULES							
COMPONENT	INSPECT FOR	Comments					
Gears/ Bearings/ Bushings	Wear, debris or misalignment. Components should move freely though their full range of motion.	Adjust, clean and lubricate. Bearings should be lubricated with Fumbling 25/6. Bushings and gears should remain unlubricated; however all particulate should be removed. Replace all worn parts.					
Internal Power Connections	Wear or debris on RF contact components and surfaces. Contact springs must be fully engaged with rotating surfaces through the full range of motion.	Remove all particulate and replace all worn components.					
	Electrical shorting to ground or signs of arcing. Deposition of conductive coatings can cause shorting of internal connections.	Components should be properly cleaned or replaced. If any internal power connections require additional bead blasting or mechanical cleaning, those parts must be properly vacuum washed and dried prior to re- installation.					
	Damaged insulators. Ceramics or wire insulation must remain intact to ensure proper system operation.	Broken ceramics or brittle wire sleeving must be replaced.					
	Coated insulators	All coated ceramics must be cleaned or replaced.					
	Debris in F/T's. Particulate and debris can cause shorting across electrical posts in F/T ports.	All particulate and debris must be removed.					
Gas Ring	Deposition build-up or flaking	Bead blast to remove build-up, vacuum wash and dry thoroughly. All gas inlet holes must be free from particulate, such as bead blasting media.					

ALL MODULES						
COMPONENT	INSPECT FOR	Comments				
Wedge Tool	Deposition build-up or flaking	Bead blast to remove build-up, vacuum wash and dry thoroughly				
	Installation of the blade. The blade must be parallel to the substrate through its range of motion.	Adjust blade				
	Signs of damage, arcing or broken insulators on internal wires	Broken ceramics or brittle wire sleeving must be replaced.				
	Retracted limit switch. The interlock must be triggered when the wedge tool is retracted.	Verify wire connections and replace wiring or the switch if required.				
	Substrate / mask touching wedge interlock switch.	Verify wire connections and replace wiring or the switch if required.				
	Cleanliness of Teflon guides	Clean all motion surfaces.				
Wide Range Gauge	Atmosphere reading	Refer to manufacturer's manual				
Vacuum Switch	Atmosphere reading. When the chamber is vented to atmosphere, the vacuum switch should not indicate a vacuum level. Once the chamber is pumped down, the vacuum switch should then indicate a vacuum level.	Verify wire connections and replace switch if required.				

ORGANIC MODULES							
COMPONENT	INSPECT FOR	Comments					
Sources	Deposition build-up or flaking on shutters, source covers and chimneys	Bead blast to remove build-up, vacuum wash and dry thoroughly.					
	Thermocouple operation. Assure the display reading is showing ROOM temperature.	Check for a short to ground or contact between thermocouple wires throughout the internal routing of the wires. Check for an open circuit on the source base and feed through.					
	Heater operation	Check for a short to ground. Check for an open circuit on the source base and chamber.					
	Crucible condition	Check for cracks and replenish material as required. If the crucible is cracked it must be replaced.					
Dellet Fooder	Deposition build-up or flaking	Bead blast to remove build-up, vacuum wash and dry thoroughly					
	Check rotation of feeder	Remove all particulate and wipe internals with isopropyl alcohol and lint free wipes. If any internals require additional bead blasting or mechanical cleaning, those parts must be properly vacuum washed and dried prior to re-installation.					
	Material charge	Replenish material as required					
	Operation of the cassette indexer	Remove all particulate and wipe internals with isopropyl alcohol and lint free wipes. If any internals require additional bead blasting or mechanical cleaning, those parts must be properly vacuum washed and dried prior to re-installation.					

SPUTTER MODULES			
COMPONENT	INSPECT FOR	Comments	
	Target erosion	Replace target as required	
	Gun short circuit to earth	Bead blast and clean thoroughly to remove contamination. Check N type connection for particulates	
	Water leaks	Refer to cathode manual	
Cathodes	Deposition build on target clamp screws. Over time, deposits will form in the screw heads and make removal difficult.	Replace as required. Silver plated hardware is required to avoid galling.	
	Deposition build up on the main cathode insulator. Visually inspected at each target change.	Remove deposition using a fine scotch-brite or mechanical polishing technique. Care must be taken to protect all o-ring sealing surfaces. Replace as required.	
	Chimney and target hold down ring installation	Refer to cathode manual	
	Proper alignment of cathode shutters in the open and close position	The shutter should not be touching the top of the dark space shield and should be parallel to the target face when closed. A distance of 1/16" to 1/8" from the top of the dark space shield and bottom of the shutter blade is required. When open, there should be no interference with other components or the substrate.	

E-BEAM MODULES			
COMPONENT	INSPECT FOR	Comments	
E-Guns	Stray beam damage to hearth or nearby shielding	Adjust filament or beam sweep pattern	
	Sufficient material available in the hearth	Refill empty or depleted crucibles	
	Spillage or deposition of the material on hearth	Remove all excess material and particulate	
	Smooth operation of the hearth indexer	Clean rotary drive and seals	
	Filament condition	Replace as required	

CENTRAL DISTRIBUTION MODULES			
COMPONENT	INSPECT FOR	Comments	
	Usage	If the total travel is over 4,000 m the bearings must be replaced.	
Linear Rack & Pinion (LRP)	Smooth movement within the full range of motion	The rollers should be cleaned or replaced if worn. The bearings should be inspected and lubricated with Fomblin 25/6. If cleaning and lubrication do not correct the problem, replace the bearings. Check that the pinion gear is correctly engaging with the rack and replace the pinion gear if worn.	
Transfer Forks	Degradation of Dicronite coating. A worn coating can increase the risk of failed transfer or a substrate holder binding within the fork assembly.	Recoat when worn. Contact the manufacturer for information.	

THERMAL MODULES		
COMPONENT	INSPECT FOR	Comments
Sources	Deposition build-up or flaking on shutters, source covers and chimneys	Bead blast to remove build-up, vacuum wash and dry thoroughly
	Heater	Check for a short to ground. Check for an open circuit on the source base and chamber.
	Crucible	Check for cracks and replenish material as required. If the crucible is cracked it must be replaced.
Pellet Feeder	Excessive deposition or flaking	Bead blast and clean thoroughly to remove contamination.
	Check rotation of feeder	Bead blast and clean thoroughly to remove contamination.
	Material Charge	Fill with pellets where consumed
	Operation of the cassette indexer.	Bead blast and clean thoroughly to remove contamination.

Inspected by: _____ Date:_____

AUTHORIZED SIGNATURE

DAILY MAINTENANCE

ALL MODULES		
COMPONENT	INSPECT FOR	Comments
	Signs of leakage at all connections	Repair and reseal with Teflon tape. Other types of thread sealant must be avoided.
Water Flow	Bulges or signs of failure in hoses	Replace hoses
	Proper flow indication. If the proper flow is being supplied (or shut OFF), but the indicator is not correct, the flow switch may be clogged or defective.	Remove, clean or replace the flow switch.
Compressed Air	Setting of recommended pressure at each module. Min 70 psig, Max 100 psig	Adjust regulator to the correct value.
Nitrogen	Setting of recommended vent pressure at each module. Set to 10 psig	Adjust regulator to the correct value.
	Setting of recommended cryo purge pressure at each module. Set to 40 psig	Adjust regulator to the correct value.
Process Gas	Setting of recommended pressure at each module for each gas. Set to 10 psig	Adjust regulator to the correct value.
Pressure	Inspect compressed air regulator pressure reading on each module. Set to 80 -90 psig	Adjust regulator to the correct value.
	Manufacturer's recommended maintenance	Refer to manufacturer's manual
	Cryopump 2nd stage temperature	Regenerate if > 20 K
Cryo Pump	Main shaft seal contamination. If the main shaft seal becomes contaminated, the pump will begin to make a loud "clunking" noise. This requires purging of the He lines with UHP He.	Refer to manufacturer's manual
Viewports	Deposition coating, cracks or defects	Remove deposition or replace the viewport if cracked or chipped.
	Signs of wear, cracks or excessive debris below belt	Replace belt
Drive Belts	Belt tension. The belt should be tight, but not to the extent when the pulleys or gears are being excessively stressed and distorting drive shafts.	Adjust belt tension

ALL MODULES		
COMPONENT	INSPECT FOR	Comments
Hoist Operation	Debris due to wear on the internal bushing	Clean all motion surfaces and apply a heavy duty gear lubrication to the drive screw. If lubrication does not correct the problem, the guide bushing may need replacing.
Chamber Pressure	Chamber base pressure. A significant increase in the chamber base pressure can indicate a leak to atmosphere or a failed water connection. Deposition build-up will also affect chamber pressure. Pumping performance should be monitored and logged.	Leak check the system and repair any vacuum leaks. Remove deposition from internal components.
Linear Rack & Pinion (LRP)	Usage	If the total travel is over 4,000 m the bearings must be replaced.
	Smooth movement within the full range of motion	The rollers should be cleaned or replaced if worn. The bearings should be inspected and lubricated with Fomblin 25/6. If cleaning and lubrication do not correct the problem, replace the bearings. Check that the pinion gear is correctly engaging with the rack and replace the pinion gear if worn.
Shutters	Optimal substrate and source shutter speed and travel limits.	Adjust flow controllers on air lines or open and close limits of operation.
Baratron Zeroing	Check that each baratron gauge is set to zero	Refer to manufacturer's manual

Inspected by: _____ Date:_____ Date:_____

7-DAY MAINTENANCE

ALL MODULES		
COMPONENT	INSPECT FOR	Comments
Limit Switches	Proper operation. Operate each axis of motion in each direction of movement to its limits. The switches should indicate limits of travel in the operation positions.	Verify wire connections and replace wiring or the switch if required.
Proximity Sensors	Proper operation. Check illumination of sensor when at home or in the limit position.	Verify wire connections and replace wiring or the switch if required.
Sample Transfer	Sample transfer to all transfer locations. Transfer should be inspected at each location for the proper placement and pick-up of substrates and masks.	Adjustments should be made at each location. Encoder counts or position values should be logged for reference.
Z-Shifts	Smooth motion in both up & down directions	Clean all motion surfaces and apply Rocol grease on lead screws and Fomblin 25/6 on all bearings. If lubrication does not correct the problem, the guide shafts or lead screw may be distorted or the guide bushing may need replaced. Replace the guide shaft or lead screw as required.
	Operation of limit switches. Operate the Z- shifts in each direction of movement to its limits.	Verify wire connections and replace wiring or the switch if required.
	Operation. The recommended maximum operation of the bellows is 10,000 cycles.	Replace the bellows at or before 10,000 cycles of operation
	Operation. The recommended maximum operation of the lead screws and drive nuts is 10,000 cycles.	Replace the lead screw and drive nuts at or before 10,000 cycles of operation
Cassette and Platen Shafts	Wear, misalignment, debris and free rotation of bearings. Components should move freely.	Clean, adjust and lubricate. Bearings should be lubricated with Fomblin 25/6. If the shaft is misaligned, adjust the bearings to ensure normal travel.

ALL MODULES			
COMPONENT	INSPECT FOR	Comments	
External Power Connections	External cable connection shorting. When power cables are removed and reinstalled, conductive particulate can begin to accumulate inside the connector on the insulator.	Thoroughly clean the connector insulator from all particulate or replace the cable.	
Mechanical Pumps	Manufacturer's recommended maintenance	Refer to manufacturer's manual	
	Poor fore line pressure. Leaking vacuum lines or blocked exhaust ports can affect pumping performance.	Assure vacuum line connections are tight and the exhaust port is free from blockage. Fore line pressures should be logged for reference.	

Inspected by: _____ Date:_____

AUTHORIZED SIGNATURE

30-DAY MAINTENANCE

ALL MODULES		
COMPONENT	INSPECT FOR	Comments
Cryo Pump	Pumping performance. Over time the pump can become saturated.	Regenerate all the cryo pumps
	Manufacturer's recommended maintenance	Refer to manufacturer's manual
lloist	Wear on bushings and drive couplings	Replace bushing or drive coupling
Assembly	Debris on bushings and drive couplings	Clean and lubricate bushings and drive couplings with a heavy duty bearing lubricant
Mechanical Pump	Poor fore line pressure or extended pumpdown times when using oil sealed pumps.	Replace foreline trap adsorbent material (Zeolite)
RGA Scan	Chamber integrity. Comparing periodic RGA scans with a baseline scan can help identify potential problems that could affect pumping performance and film quality.	Compare a new scan to the baseline scan and save for reference. Leak check or clean the system as required.

Inspected by: _____ Date:_____ Date:_____

90-DAY MAINTENANCE

ALL MODULES		
COMPONENT	INSPECT FOR	Comments
Pneumatic/ Manual Valves	Wear. Seals and bellows should be inspected or replaced at 250,000 cycles. Process induced contamination and bake out temperature above 150 deg C may shorten service intervals significantly.	Replace seals and bellows at or before 250,000 cycles of operation.
Hoist Rotation	Wear or debris on the hoist yoke bearings. Components should move freely.	Clean, adjust and lubricate with a heavy duty gear lubricant. Replace if worn.
Wedge Tool Blade Drive Bearings	Wear and debris. Components should move freely.	Clean, adjust and lubricate with Fomblin 25/6. Replace if worn.

LOAD LOCK MODULES			
Component	INSPECT FOR	Comments	
Door	Wear on latch bearings or spacers.	Replace bearings and spacers	
	Wear on hinges or improper door alignment.	Replace or adjust hinges	
	Damage to o-ring	Replace o-ring	

Inspected by: _____ Date:_____

AUTHORIZED SIGNATURE

YEARLY MAINTENANCE

ALL MODULES		
COMPONENT	INSPECT FOR	Comments
Baratron	Calibration	Refer to manufacturer's manual
MFCs	Calibration	Refer to manufacturer's manual
Mechanical	Pumping performance. Tip seal should be replaced after 9,000 hours of operation.	Replace tip seals at or before 9,000 hours of operation
Pump	Manufacturer's recommended maintenance	Refer to manufacturer's manual
Turbo Pumps	Manufacturer's recommended maintenance	Refer to manufacturer's manual
Transfer Forks	Degradation of Dicronite coating. A worn coating can increase the risk of failed transfer or a substrate holder binding within the fork assembly.	Recoat when worn. Contact the manufacturer for information.
Cooling Lines	Scale or residue buildup in cooling lines. Build up can reduce cooling water flow which could affect the lifetime of the components.	Flush with a de-scaler or cleaner and replace as required.

Inspected by: _____ Date:_____

AUTHORIZED SIGNATURE

SPARE PARTS LIST

The following is a list of recommended spare parts for a standard PVD 75 system and should be used for reference purposes only. The system schematics, Operation Manual, Component Manuals and Preventative Maintenance Schedule should be reviewed for more details and components specific to your system. Spare parts and accessories that have not been supplied by KJLC have also not been tested and approved by us. The fitting and/or use of such products could therefore negatively affect the design characteristics of your machine. KJLC accepts no liability for damages arising from the use of non-original parts and non-original accessories.

<u>SS</u> refers to stainless steel and <u>AI</u> refers to aluminum products. All dimensions are in inches unless otherwise specified.

<u>In Stock</u> refers to items typically kept in stock at our main warehouse in Pennsylvania. Availability of these items is subject to change and may or may not be in stock at our satellite offices. Most in stock items will ship within 1 to 2 days of order receipt. Expediting services are available. For up to date availability and ordering, please visit <u>www.lesker.com</u>.

<u>Lead Time</u> refers to the typical time required to manufacture or acquire items not normally kept in stock.

Please refer to the following category descriptions when ordering spare parts.

- C Consumable Keep on hand
- CNS Critical Item Not in stock
- CS Critical Item In stock
- R Reference and information only
- W Wear based on customer use

VACUUM HARDWARE

Part Number	DESCRIPTION	CATEGORY	In Stock	LEAD TIME	QUANTITY
4XVCR-GAC	Copper Gasket, ¼ VCR	R	Y		10
GA-0133	Copper Gasket, 1.33 CF	R	Y		2
GA-0275	Copper Gasket, 2.75 CF	R	Y		2
GA-0450	Copper Gasket, 4.5 CF	R	Y		1
GA-0600	Copper Gasket, 6 CF	R	Y		1
GA-0800	Copper Gasket, 8 CF	R	Y		1
GA-1000	Copper Gasket, 10 CF	R	Y		1
QF16-075-ARV	QF16 AI Centering Ring / Viton O-Ring	R	Y		1
QF25-100-ARV	QF25 AI Centering Ring / Viton O-Ring	R	Y		1
QF100-AAVR	QF100 AI Centering Ring / Viton O-Ring	R	Y		1
QF160-AAVR	QF160 AI Centering Ring / Viton O-Ring	R	Y		1
QF250-AAVR	ISO 250 AI Centering Ring / Viton O-Ring	R	Y		1

FBH-100AL	1" Blank-Off, Aluminum	R	Y		1
FBH-100S	1" Blank-Off, SS	R	Y		1
O-V006	1/8" Vac Coupling O-Ring	R	Y		3
O-V012	O-Ring For 3/8" Vac Coupling	R	Y		2
O-V116	¾" Vac Coupling O-Ring	R	Y		3
S-012-P	SS Plug - 1/8" Vacuum Coupling	R	Y		As Required
S-075-P	SS Plug - 3/4" Vacuum Coupling	R	Y		As Required
SS-4WVCR6400	¼" FVCR to ¼" Swagelok Adapter	R	Ν	6 Days	As Required
4FVCR-CP	¼ SS VCR Cap	R	Y		As Required
4MVCR-P	¼ SS VCR Plug	R	Y		As Required
SS-400-C	¼ SS Swagelok Cap	R	Ν	6 Days	As Required
SS-400-P	¼ SS Swagelok Plug	R	Ν	6 Days	As Required
SS-200-SETS	1/8 SS Ferrule Set	R	Y		1
SS-400-SETS	¼ SS Ferrule Set	R	Y		1
B-400-SETS	¼ Brass Ferrule Set	R	Y		1
SS-600-SETS	3/8 SS Ferrule Set	R	Y		1
B-600-SETS	3/8 Brass Ferrule Set	R	Y		1

VACUUM MEASUREMENT & CONTROL

PART NUMBER	DESCRIPTION	CATEGORY	IN S тоск	LEAD TIME	QUANTITY
390410-0-YG-T	390 Combination Gauge, Hot Ion / Pirani	CS	Y		1
PTR26950	Pirani Gauge, QF16	CS	Y		1
VACSWITCH1	Vacuum Switch, ¼ MVCR	CS	Y		1
1179A01312CR1BV	Mass Flow Controller, 0 - 100 sccm	R	Y		1
626B.1TLE	Capacitance Manometer - 0.1 Torr	R	Y		1
SS-4BK-1C	Inline Vent Valve, ¼ Swagelok	R	Y		1
SS-4BK-V511C	Inline Process Gas Valve, ¼ FVCR	R	Ν	6 Days	1
SST-0025CI	Tubing, 316L SS, ¼ "OD, Electro-polished	R	Y		As Required
SG0600MV-ON	Gate/Bonnet O-ring Set - SGP0600 Series Gate Valve	W	N	31 Days	1
SG0800MV-ON	Gate/Bonnet O-ring Set - SGP0800 Series Gate Valve	W	Y		1
SG1000PV-ON	Gate/Bonnet O-ring Set - SGP1000 Series Gate Valve	W	Ν	31 Days	1
SG1200PV-ON	Gate/Bonnet O-ring Set - SGP1200 Series Gate Valve	W	N	10 Days	1

ROUGHING / BACKING

PART NUMBER	DESCRIPTION	CATEGORY	ΙΝ S τοck	LEAD TIME	QUANTITY
PFEGL915QF25	Oil Mist Eliminator with Pressure Relief	R	Y		1
PFEGL915	PFEGL915QF25 Replacement Element	С	Y		1
AV-104200	Oil Mist Eliminator, Pump Models 2005 - 21SD	R	Y		1
AV-068304	AV-104200 Replacement Element	С	Y		1
TAR4CS100QF	Rechargeable Foreline Trap	R	Y		1

TAR4S	TAR4CS100QF Mesh Element, SS Wool	С	Y		1
PFI843KF25	Inlet Vacuum Filter, QF25	R	Ν	10 Days	1
PFI843KF40	Inlet Vacuum Filter, QF40	R	Ν	10 Days	1
PF1843	PFI813HF25 / 40 Polyester Element	С	Ν	3 Days	1
PFIZE842	PFI813HF25 / 40 Zeolite Cartridge	С	Y		1

HIVAC – TURBO PUMP

Part Number	DESCRIPTION	CATEGORY	ΙΝ S τοck	LEAD TIME	QUANTITY
PM016207AU	HiPace 80 Centering Ring with Screen, ISO	R	Ν	25 Days	1
PM016211-U	HiPace 300 Protective Screen, ISO 100	R	Ν	25 Days	1
PM016339	HiPace 700 Protective Screen, 8" CF	R	Ν	20 Days	1

HIVAC – CRYO PUMP

Part Number	DESCRIPTION	CATEGORY	IN Stock	LEAD TIME	QUANTITY
8080250K036	Purge Gas Heater For Cryopump 230V	R	Ν	10 Days	1
8080255K001	Absorber, SC or 8200 Compressors	С	Ν	10 Days	1
O-V026	Exhaust O-Ring 1-1/4 ID – 1/16, Viton	R	Y		1

CHAMBER DOOR

Part Number	DESCRIPTION	CATEGORY	In Stock	LEAD TIME	QUANTITY
8476K47	Borosilicate Glass 4 x 6 x 5/8 - Door Window	R	Ν	15 Days	1
8476K471	Borosilicate Glass 4 x 6 x 1/8 - Window Cover	С	Ν	13 Days	1
O-V251	O-Ring 5-1/8 x 1/8 – Window Seal	R	Y		1
O-V473	O-Ring 24 x 1/4 – Chamber Seal	R	Ν	10 Days	1

LOW TEMP PLATEN ASSEMBLY (150 – 550°C) – QLH LAMPS

Reference Schematics: A0025397, A0038879 and A0038851

Part Number	DESCRIPTION	CATEGORY	In Stock	LEAD TIME	QUANTITY		
	HEATER						
QJ-1M	Quartz Lamp Socket	W	Y		2		
FCM	Lamp, Quartz, 1000W, 120VAC	С	Y		2		
QLH1000	Substrate Heater Assembly (includes QJ-1M and FCM)	W	Y		2		
KTIN-18G-18	Inconel Sheathed K-Type T/C	CS	Y		2		
FTAWCU094	OFHC Copper Wire, .094 DIA.	W	Y		2 ft		
FTACERB116	Ceramic Beads	W	Y		2 ft		
69405K64	Ring Terminal, Nickel, #10 Stud	W	Y		8		
PLATEN – INCLUDING BIAS OPTION							
P0021446	6" Diameter Substrate Holder	W	Y		1		
P0015229	12" Diameter Substrate Holder	W	Y		1		

SHA-08S003	Substrate Holder Clip	С	Y		6
SB440025P	Substrate Holder Clip Hardware, #4-40 x 0.25	С	Y		6
W4-SAE	Substrate Holder Clip Washer, #4	С	Y		6
CA4101MTRHSW	Home Switch Assembly (includes PM-K24)	CS	Ν	10 Days	1
РМ-К24	Photoelectric Sensor for CA4101MTRHSW	CS	Y		1
A6R3-060037	Timing Belt, 60 Teeth – Platen Rotation	W	Y		1
A6G3-065037	Timing Belt, 65 Teeth – Platen Rotation	W	Ν	5 Days	1
A6G3-070037	Timing Belt, 70 Teeth – Platen Rotation	W	Y		1
N8-32A	Hex Nut, Alumina 8-32	С	Y		2
PLA-28S039	RF End Conductor, Alumina Insulator	С	Y		1
PLA-28S034	RF End Conductor, Alumina Insulator Elbow	С	Y		2
P0020768	RF Conductor, Alumina Leg Cover	С	Ν	5 Days	1
273-0010-1-S	3/4 x 3/8 inch Ceramic Standoff, 6-32 Threads	С	Ν	5 Days	4
P0037919	Ceramic Insulator Tube, ½ x 20 inch	W	Y		1
LSM5MLLUB	Z-Shift Lubricant, 5 ml Syringe (ROCOL)	W	Ν	10 Days	1
O-V022	KLFDHC100 Rotary F/T, Inner Shaft O-Ring	С	Y		2
O-V037	KLFDHC100 Rotary F/T, Outer Housing O-Ring	С	Y		2

HIGH TEMP PLATEN ASSEMBLY (550 - 800°C) - BOX HEATER

Reference Schematics: PLA-2806 and HTR-3230

PART NUMBER	DESCRIPTION	CATEGORY	In Stock	LEAD TIME	QUANTITY
	HEATER				
Q240V1500	Lamp, Quartz, 1500W, 240VAC	С	Y		4
52408	1/2 OD x 1 x 3/8 inch Ceramic Standoff, 8-32	W	Y		2
KTIN-18G-18	Inconel Sheathed K-Type T/C	CS	Y		2
FTAWCU094	OFHC Copper Wire, .094 DIA.	W	Y		2 ft
FTACERB116	Ceramic Beads	W	Y		2 ft
69405K64	Ring Terminal, Nickel, #10 Stud	W	Y		8
HTR-32S015	Main Heater Reflector	W	Y		1
HTR-32S014	Side Heater Reflector	W	Y		2
	PLATEN - INCLUDING BIAS OPTI	ON		•	
N8-32A	Hex Nut, Alumina 8-32	С	Y		2
PLA-28S039	RF End Conductor, Alumina Insulator	С	Y		1
PLA-28S034	RF End Conductor, Alumina Insulator Elbow	С	Y		2
PLA-28S038	RF Conductor, Alumina Leg Cover	С	Ν	5 Days	1
273-0010-1-S	3/8 OD x 3/4 inch Ceramic Standoff, 6-32	С	Ν	5 Days	4
PLA-28S051	Ceramic Insulator Tube, ½ x 21.75 inch	W	Y		1
CA4101MTRHSW	Home Switch Assembly (includes PM-K24)	CS	Ν	10 Days	1
РМ-К24	Photoelectric Sensor for CA4101MTRHSW (rotation)	CS	Y		1
V3L-3-D8	Micro Roller Switch (z-position)	CS	Y		2
A6R3-060037	Timing Belt, 60 Teeth – Platen Rotation	W	Y		1

A6G3-065037	Timing Belt, 65 Teeth – Platen Rotation	W	Ν	5 Days	1
A6G3-070037	Timing Belt, 70 Teeth – Platen Rotation	W	Y		1
LSM5MLLUB	Z-Shift Lubricant, 5 ml Syringe (ROCOL)	W	Ν	10 Days	1
O-V022	KLFDHC100 Rotary F/T, Inner Shaft O-Ring	С	Y		2
O-V037	KLFDHC100 Rotary F/T, Outer Housing O-Ring	С	Y		2

HIGH TEMP PLATEN ASSEMBLY (550 – 850°C) – PBN ELEMENT STYLE (EPICENTER)

Reference Schematics: ECP-MS-001B, ECP-HMCA-001B, ECP-MS-002B, ECP-HMCA-002B, EC-SA-007, EC-SA-008 and EC-SA-011

Part Number	DESCRIPTION	CATEGORY	In Stock	LEAD TIME	QUANTITY
EC-SA-011	Earth Contact Assembly	W	Ν	15 Days	1
EC-RBC-049	RF Bias Plunger Assembly - Contact Pad	W	Ν	15 Days	1
EC-SA-008	RF Bias Plunger Assembly, 4 – inch Platen	W	Ν	15 Days	1
EC-SA-007	RF Bias Plunger Assembly, 6 – inch Platen	W	Ν	15 Days	1
IFTHG013052	H-N Type Feed Thru (50 ohm)	R	Y		1
4095-211	Type K, 1/16" Inconel Sheath, Grounded T/C	CNS	Ν	15 Days	2
HM-100-PGG- ELEMENT	Pyrolitic Graphite on Graphite Heater Element, 100 mm (4-inch)	CNS	Ν	15 Days	1
HM-150-PGG- ELEMENT	Pyrolitic Graphite on Graphite Heater Element, 150 mm (6-inch)	CNS	N	15 Days	1
HM-100-SSIC- ELEMENT	Silicon Carbide Coated Graphite Heater Element, 100 mm (4-inch)	CNS	Ν	15 Days	1
HM-150-SSIC- ELEMENT	Silicon Carbide Coated Graphite Heater Element, 150 mm (6-inch)	CNS	Ν	15 Days	1
HM-HSK-100PGG	Spares Kit for 100 mm Heater Module	R	Ν	15 Days	1
HM-HSK-150PGG	Spares Kit for 150 mm Heater Module	R	Ν	15 Days	1
RMF-052	Moly Wire, 0.5 mm	R	Ν	15 Days	6 inches
FRM-001	M4 Tantalum Nut	R	Ν	15 Days	6
FRM-002	M4 Moly Washer	R	Ν	15 Days	6
HE-001	M4 Grafoil Washers	R	Ν	15 Days	4
EC-HMP-004	Moly Conductor	R	Ν	15 Days	2
CC-M-001	Ceramic Spacer 6 x 4 x 4.5 mm	R	Ν	15 Days	4
306-00034	Ceramic Spacer 14 x 6.4 x 1.5 mm	R	Ν	15 Days	4
CC-005	Ceramic Spacer 7 x 5 x 20 mm	R	Ν	15 Days	4
CC-006	Ceramic Washer 8 x 5 x 5 mm	R	Ν	15 Days	6
E329	Ceramic Top Hat	R	Ν	15 Days	6
S-002	Haynes Spring Washer – M4	R	Ν	15 Days	6

PROCESS CONTROL

NOTE: All crystal sensors come in a package of 10.

Part Number	DESCRIPTION	CATEGORY	IN Stock	LEAD TIME	QUANTITY
008-009-G10	6Mhz Crystal Sensor, Silver (clean room pkg)	С	Ν	5 Days	1
LI008010G10	6Mhz Crystal Sensor, Gold	С	Y		1
750-679-G1	6Mhz Crystal Sensor, Alloy (clean room pkg)	С	Ν	15 Days	1
008-007	Crystal Snatcher Removal Tool	R	Ν	10 Days	1

NOTE: Quantities for deposition sources listed below are for one source. For systems with multiple sources, quantities should be adjusted.

TORUS® HV Sputter Source 2-Inch

Part Number	DESCRIPTION	CATEGORY	IN Ѕтоск	LEAD TIME	QUANTITY
TRS2CC-00300	Magnet Assembly, 2" Standard Strength	W	Y		1
TRS2CC-HS300	Magnet Assembly, 2" High Strength	W	Y		1
TRS2CC-00600	Target Hold Down Ring	W	Y		1
TRS2CC-00650	Target Hold Down Ring Spacer	W	Y		1
TRS2CC-KHDW2	Hardware Only Kit, TRS2	W	Ν	15 Days	1
TRS2CC-RBKIT	Rebuild Kit (All hardware, o-rings & tubing)	W	Ν	4 Days	1

TORUS® HV Sputter Source 3-Inch

PART NUMBER	DESCRIPTION	CATEGORY	IN S тоск	LEAD TIME	QUANTITY
TM03CC-00300	Magnet Assembly, 3" Standard	W	Y		1
TM03CC-HS300	Magnet Assembly, 3" High Strength	W	Y		1
TM03UC-00600	Target Hold Down Ring	W	Y		1
TM03UC-00650	Target Hold Down Ring Spacer	W	Y		1
TM03CC-KHDW3	Hardware Only Kit, TRS3	w	Y		1
TM03CC-RBKIT	Rebuild Kit (All hardware, o-rings & tubing)	W	N	5 Days	1

TORUS® HV Sputter Source 4-Inch

Part Number	DESCRIPTION	CATEGORY	IN S тоск	LEAD TIME	QUANTITY
TM04CC-00300	Magnet Assembly, 4" Standard	W	Y		1
TM03CC-HS400	Magnet Assembly, 4" High Strength	W	Y		1
TM04CC-00600	Target Hold Down Ring	W	Y		1
TM04CC-00650	Target Hold Down Ring Spacer	W	Y		1
TM04CC-KHDW4	Hardware Only Kit, TRS4	W	Y		1
TM04CC-RBKIT	Rebuild Kit (All hardware, o-rings & tubing)	w	N	15 Days	1

TORUS® LINEAR SOURCE

Part Number	DESCRIPTION	CATEGORY	IN Stock	LEAD TIME	QUANTITY
SB832037P	Top Shield Bolts	W	Y		18
TML00SC-4001	Long Dss Top	W	Ν	15 Days	2
SB832062P	Target Bolts	W	Y		18
TML00SC-6001	Long Target Clamp	R	Ν	15 Days	2
O-V216	Insulator O-Ring	С	Y		4
TML00SC-5001	Insulator Seal	С	Ν	15 Days	2
TML00SC-4002	Short DSS Top (3.5" x 8" source)	W	Ν	15 Days	2
TML00SC-6002	Short Target Clamp (3.5" x 8" source)	R	Ν	15 Days	2
TML00SC-6005	Membrane (3.5" x 8" source)	R	Ν	15 Days	1
O-V259	Target/Flange O-Ring (3.5" x 8" source)	С	Ν	10 Days	2
O-V281	Flange O-Ring (3.5" x 8" source)	С	Ν	10 Days	1
TML00SC-4004	Short DSS Top (5" x 8" source)	W	Ν	15 Days	2
TML00SC-6004	Short Target Clamp (5" x 8" source)	R	Ν	15 Days	2
TML00SC-6006	Membrane (5" x 8" source)	R	Ν	15 Days	1
O-V262	Target/Flange O-Ring (5" x 8" source)	W	Y		2
O-V281	Flange O-Ring (5" x 8" source)	R	Ν	10 Days	1

THERMAL SOURCE

NOTE: Tungsten boats are supplied as standard. Depending the on the material being evaporated, other types of boats or heaters are available. Reference drawing A0015177.

Part Number	DESCRIPTION	CATEGORY	In Stock	LEAD TIME	QUANTITY
PVD75SW3B	3 Boat Shutter Weldment	W	Y		1
PVD75CCS	Cross Contamination Shield	W	Y		2
SB440025VP	Cross Contamination Shield Hardware	W	Y		4
SB37516050	3 Boat Buss Bar Hardware 3/8-16 x ½"	W	Y		3
1618002-7	Relay, 600A, 24 VDC	CS	Y		1
SB37516100VP	Electrical F/T Hardware 3/8-16 x 1"	W	Y		4
O-V216	Electrical F/T O-Ring (FTT0013754)	W	Y		4
FSCINS001	Small Teflon Insulator	W	Ν	21 Days	4
FSCINS002	Large Teflon Insulator	W	Ν	21 Days	4
EVS8D010W	Tungsten Boat, 4"L X 1"W X 1/4" Deep	С	Y		3
EVS7005TA	Tantalum Boat, 3"L X 3/4"W X 1/8" Deep	С	Y		3
EVSSO10	SIO Baffle Box Source	С	у		3
EVCH1	Crucible Heater, 2-3/4"L X 1-1/4" W X 5/8" Deep	С	Y		3
EVCH5	Crucible Heater, 4"L X 1-3/4" W X 1-1/8" Deep	С	Y		3
EVCH12A	Crucible Heater, 3-1/2"L X 1-1/8" W X 1" Deep	С	Y		3
EVC1AO	Aluminum Oxide Crucible for EVCH1	С	Y		3
EVC1BN	Boron Nitride Crucible for EVCH1	С	Y		3

EVC5AO	Aluminum Oxide Crucible for EVCH5 and EVCH12A	С	Y	 3
EVC5BN	Boron Nitride Crucible for EVCH5 and EVCH12A	С	Υ	 3

LTE SOURCE

PART NUMBER	DESCRIPTION	CATEGORY	IN Ѕтоск	Lead Time	QUANTITY
EVCEF-1AO	Aluminum Oxide Crucible, 1cc	С	Ν	30 Days	2
EVCEF-10AO	Aluminum Oxide Crucible, 10cc	С	Ν	30 Days	2
EVCEF-30AO	Aluminum Oxide Crucible, 30cc	С	Ν	30 Days	2

E-BEAM SOURCE, KL-6 & KL-8

NOTE: Fabmate liners are supplied as standard. Depending the on the material being evaporated, other types of liners are available.

PART NUMBER	DESCRIPTION	CATEGORY	IN Ѕтоск	LEAD TIME	QUANTITY
SHU-A0020780	Shutter Blade	W	Ν	5 Days	1
EVCFABEB-4	KL-6 Fabmate Crucible Liner, 4 Pocket	С	Y		As Required
EVCFABEB-22	KL-6 Fabmate Crucible Liner, 6 Pocket	С	Y		As Required
EVCFABEB-32	KL-8 Fabmate Crucible Liner, 4 Pocket	С	Ν	45 Days	As Required
EVCFABEB-29	KL-8 Fabmate Crucible Liner, 6 Pocket	С	Y		As Required
1-700310	Filament Block Assembly – Bent Filament	W	N	15 Days	1
EBKL1-703000	Filament Set (5 pcs) – Bent Filament	С	Ν	15 Days	1
1-700317	Ceramic Insulator – Bent Filament	W	N	15 Days	1
1-703022	Screw Set – Bent Filament	W	Ν	15 Days	1
1-700314	Filament Clamp – Long – Bent Filament	W	Ν	15 Days	1
1-700315	Filament Clamp – Short – Bent Filament	w	Ν	15 Days	1
EBKL1-700321	Filament Block Assembly– Straight Filament	W	N	15 Days	1
1-703008	Filament Set (5 pcs) – Straight Filament	С	N	15 Days	1
1-931100	KL-6 O-Ring Set	W	N	15 Days	1
1-931103	KL-8 O-Ring Set	W	N	15 Days	1
1-610800	KL-6 Magnet Current Deflection System	W	N	15 Days	1
1-611800	KL-8 Magnet Current Deflection System	w	Ν	15 Days	1
0-601786	Rotary F/T Upper and Middle O-Ring	W	N	15 Days	2
0-601077	Rotary F/T Lower O-Ring	W	Ν	15 Days	1
COMPRESSED GAS

Part Number	DESCRIPTION	CATEGORY	IN Stock	Lead Time	QUANTITY
ARG20-N01G1H-Z	Compressed Air Regulator,7-125 PSI	R	Y		1
ARG20-DUN02815	Compressed Nitrogen Regulator,0-60 PSI	R	Y		1
PET012	Poly tubing, 1/8" Clear - Pneumatics	R	Y		As Required
PET025	Poly tubing, ¼" Clear - Pneumatics	R	Y		As Required
TT025	Teflon, ¼" OD Clear – Vent Gas	R	Y		As Required
639PL-2	Solenoid Plug 1/8"	R	Y		As Required

INSTRUMENT COOLING / WATER FLOW

Part Number	DESCRIPTION	CATEGORY	In Stock	LEAD TIME	QUANTITY
181130-10	Flow Switch, Brass, 0.15 GPM	W	Y		1
168443-10	Flow Switch, Brass, 0.5 GPM	W	Ν	15 Days	1
178353-10	Flow Switch, Brass, 2.0 GPM	W	Y		1
B-400-7-6	¼" Tube Press Fitting	R	Y		
B-600-7-6	3/8" Tube Press Fitting	R	Y		
44075K61	Water Filter, 25 GPM Max	С	Ν	15 Days	
4912K72	Ball Valve ¼ MNPT x ¼ FNPT	R	Y		As Required
PET025B+	Poly tubing, ¼" BLUE - Cooling	R	Y		As Required
PET025R+	Poly tubing, ¼" RED - Cooling	R	Y		As Required
PET037B+	Poly tubing, 3/8" BLUE - Cooling	R	Y		As Required
PET037R+	Poly tubing, 3/8" RED - Cooling	R	Y		As Required

LOAD LOCK / LRP

Part Number	DESCRIPTION	CATEGORY	In Stock	LEAD TIME	QUANTITY
SME-8-O-K-LED-24	Proximity Sensor Normally CLOSED	CS	Y		1
SME-8-K-LED-24	Proximity Sensor Normally OPEN	CS	Y		1

ELECTRICAL / CONTROLS

PART NUMBER	DESCRIPTION	CATEGORY	IN Stock	LEAD TIME	QUANTITY
WK4748-ND	Fuse, 5 X 20MM, 1A, Medium Time-Lag	W	Y		2
WK4757-ND	Fuse, 5 X 20MM, 2A, Medium Time Lag	W	Y		2
WK4850-ND	Fuse, 5 X 20MM, 250V, 1.25A, Time Delay	W	Y		2
WK4857-ND	Fuse, 5 X 20MM, 2A, 250V, Time-Lag	W	Y		2
WK4860-ND	Fuse, 5 X 20MM, 3A, Time-Lag	w	Y		2
WK4763-ND	Fuse, 5 X 20MM, 5A, Medium Time-Lag	W	Y		2
JJS-30	Fuse, Class T, 600V, 30A	W	Ν	5 Days	2
JJS-50	Fuse, 50A, 600V, Very Fast Acting	W	Ν	6 Days	2
1N4007-T	Diode, 1N4007, DO-41, 1000V, 1A	W	Y		2

FNQ-R-1/4	Fuse, Class CC, FNQ, 1/4A	W	Ν	5 Days	2
FNQ-R-1/2	Fuse, Class CC, FNQ, 1/2A	W	Y		2
FNQ-R-1	Fuse, Class CC, NDQ, 1A	W	Ν	5 Days	2
FNQ-R-2	Fuse, Class CC, FNQ, 2A	W	Y		2
FNQ-R-3	Fuse, 3A, Class CC	W	Y		2
LFJLS30	Fuse, Class J, No Delay, 30A	W	Y		2
C9A41DX24VDC	Relay, 4P, 24 VDC	W	Y		1
700-HLTIZ24	Relay, SPDT, 24 VDC, 250 V / 6A	W	Ν	5 Days	1
S9-M	Relay Socket	W	Y		1
D2-16TD1-2	D205 16 Discrete Output Module	CS	Y		1
D2-32ND3	D205 32 Discrete Input Module	CS	Y		1
D2-32TD1	D205 32 Discrete Output Module	CS	Y		1
F2-04THM	D205 Thermocouple Module	CS	Y		1
F2-8AD4DA-2	Analog Output Module	CS	Y		1
H2-EBC	D205 Ethernet Port Module	CS	Y		1
L0024478	SCR, 0-10 V	W	Y		1
SC-E03G24VDC	Contactor, 10A	W	Y		1
CS10.241	24 VDC power supply	CS	Y		1
SAPCBALDDIS	Discrete Circuit Board	CS	Y		1
SAPCBALDANA	Analog Circuit Board	CS	Y		1

APPENDIX

VACUUM TECHNOLOGY

WHAT IS VACUUM?

Commonly, the word "vacuum" is applied to an enclosed volume containing gas at a lower pressure than the surrounding atmospheric pressure. So many applications, processes, and products involve vacuum that attempting to classify them appears futile. However, using very broad definitions, vacuum applications fit into six headings...

LARGE HADRON COLLIDERS

Moving electrons (or ions) from here to there as in x-ray tubes, beam lines, mass spectrometers, etc, demands high vacuum. Why? Because electrons/ions will be deflected by, attach to, or ionize any residual gas molecules they encounter. *Vacuum creates conditions in which charged or uncharged particles can be moved around without collision*.

MIRRORS

Evaporating aluminum as a thin coating on glass or plastic makes a wonderful headlamp reflector, DVD, or rear-view mirror. But try evaporating aluminum in air and the result is aluminum oxide, a white substance not noted for its reflective properties. *Vacuum prevents chemical reaction with air.*

CAMERAS

All good camera lenses are coated with an anti-reflective layer so the maximum amount of light arrives at the film or digital processor. By contrast, architectural glass is coated with partially reflective layers for visible or infra-red wavelengths. Any oil or water vapor absorbed on the glass surface prior to coating ruins the process. *Vacuum helps removes absorbed contamination from surfaces.*

HALLOWEEN MASKS

Vacuum forming is a common process for making plastic Halloween masks, compartmented lunch trays, and disposable razors. The plastic sheet is heated to a deforming temperature and the air removed between it and a metal mold. *Vacuum removes air to create a differential pressure*.

NEON SIGNS

Neon signs contain...neon (and other gases for different colors); electrical switchgear is backfilled with SF6 to prevent arcs; and all fluorescent lights are backfilled with mercury vapor. *Vacuum removes air in preparation for backfilling with an appropriate gas, vapor, or liquid.*

CLEAN SURFACES

Tribology experiments (the science of wear and friction of clean surfaces) often starts with breaking a crystal under vacuum to get a clean surface that has no absorbed contaminants. If the chamber's pressure is one millionth of an atmosphere, the initially clean surface is coated with a mono-layer of residual gas within ~1 second. If the chamber is at one billionth of an atmosphere, the time increases to ~1000 seconds. *Vacuum reduces the flux of the residual gas on a surface.*

PRESSURE

WHAT IS PRESSURE?

Since vacuum is described as a "reduced pressure" we must have some understanding of what pressure means. There are two ways of presenting it: (a) every-day experience with atmospheric pressure; and (b) what is really happening at the molecular level.

GRAND SCALE

The layer of air surrounding the earth is not thick (roughly 100 km, compared to the earth's diameter of 12,800 km). However, a column of air 1" square (6.45 cm²) at sea level projected to the top of the atmosphere weighs about 14.7 pounds (6.7 kg) on the average day. Expressed another way, this air column creates a pressure at sea level of 14.7 pounds per square inch (psi) (1.035 kg/cm²). But air is a fluid and 14.7 psi applies to all surfaces no matter what their orientation. If we evacuate a 1" cubic box at sea level, then the top (horizontal) surface will experience 14.7 psi pushing down and the bottom (horizontal) surface will experience 14.7 psi pushing up. Equally, opposite sides of the cube experience forces of 14.7 psi pushing left and right. So the cube experiences no net force pushing it in any direction (other than gravity, of course).

NANO SCALE

Air is a mixture of molecules (nitrogen, oxygen, carbon dioxide, etc) and atoms (argon, helium, etc), which at normal temperatures are all moving at high speed, making a huge number of elastic collisions with each other in a gas phase and non-elastic collisions with surfaces. At room temperature, the average nitrogen molecule is traveling at ~900 mph (474 m/s.). At any moment, ~90% of the N₂ molecules have velocities between 100 mph and 1,800 mph. But N₂ has the mass of only 4.8×10^{-23} gm, so despite its high velocity its kinetic energy is unnoticeably small. However, as noted in Number Density (below), 1 cubic centimeter (cc) of air contains a gigantic number of atoms/molecules. It is the force generated by the high speed surface bombardment of those myriad tiny particles that we experience as pressure.

PRESSURE UNIT

All pressure measurement units are of the form force per unit area. However, for many units this relationship is hard to identify. A few of the more commonly used pressure units in vacuum applications are noted here with approximate conversion factors to 1 atmosphere pressure (1 atm) to show their relative magnitude.

- millimeter of mercury: 760 mmHg = 1 atm
- Torr*: 760 Torr = 1 atm
- millitorr: 760000 mTorr = 1 atm
- micron of mercury: 760000 μHg = 1 atm
- bar: 1.013 bar = 1 atm
- millibar: 1013 mbar = 1 atm
- pascal**: 101325 Pa= 1 atm
- * Preferred unit in the USA and used throughout these notes
- * SI units (1 Pa = 1 newton/m^2)

BASIC VACUUM CONCEPTS

Our concept of solids and liquids depends largely on our ability to see/touch them. If we have two lumps of solid, roughly the same volume and one lump is light while the other is heavy, we say the heavy lump has a higher density - mass per unit volume (lb/in³, g/cc, kg/m³, etc.). Gases present a challenge to our ability to see/touch and new terms have been introduced to describe the "gaseous state". (*The gas laws used to derive the values quoted below are correct only for ideal gases. However, in room temperature chambers as pressure decreases, all gases approach ideal behavior. For vacuum applications, the appropriately scaled value - to allow for pressure change - will be sufficiently accurate for precise calculations).*

NUMBER DENSITY

Avogradro determined that equal volumes of gas at the same temperature and pressure contained equal numbers of molecules. It does not matter if the gas is pure N², CO², Ar, H², or a mixture of all four. Later, Loschmidt determined that 22.4 liters of gas at 760 Torr and 0° C contain 6.022 x 10^{23} molecules (the present day value, often called Avogadro's number). Since gas fills any volume that contains it, its "density" (in g/cc units) depends on that volume, the gas composition, and molecular weights of the components. If instead of density (mass per unit volume) we use number density (number of molecules in 1 cc) we can describe a "quantity" of gas without knowing anything about composition or molecular weights. From Avogadro's number (which refers to 22.4 liters) we know the number density (which refers to 1 cc) of any gas at 760 Torr and 0° C is 2.69 x 10^{19} cm⁻³.

MEAN FREE PATH

The huge number density at atmospheric pressure and the high velocities of the gas molecules mean that in each cc there are many, many gas phase collisions every second. Expressed another way, even though a molecule travels at high speed, on average it travels a very short distance before hitting another gas phase molecule. This average distance is called the mean free path (mfp). For air at 760 Torr the mfp is 6.5 x 10^{-6} cm.

PARTICLE FLUX

In addition to colliding with each other in the gas phase, gas molecules hit the containing vessel walls and every other surface inside the enclosure. The rate at which they hit these surfaces, called particle flux, depends on the gas's number density. The flux of air at 760 Torr and 0° C is 2.9 x 10^{23} cm⁻² s⁻¹.

REDUCING PRESSURE

If we remove some molecules from an enclosed container initially at 760 Torr, what happens to number density, mfp, and particle flux? The easiest quantity to understand is number density. If we remove half of the molecules from the container, the number density goes from 2.7×10^{19} cm⁻³ to 1.35×10^{19} cm⁻³. If we remove 99% of the original molecules, the number density is 2.7×10^{17} cm⁻³, still a huge number. The table shows the relationship between pressure, number density, mean free path, flux, and the time taken to completely cover a clean surface with a monolayer, for air at room temperature. With respect to the monolayer coverage, it depends on: particle flux, molecular diameter, and the sticking coefficient of the gas molecules on the surface. The numbers given are for air which has an average molecular diameter of 3.7 Å and the sticking coefficient is ~1 on a clean, unheated surface.

BASE PRESSURE

When a chamber has no leaks, has no gas deliberately flowing into it, and has been pumped for several days, the pressure reaches an equilibrium value called the base pressure. In truth, because the pressure approaches equilibrium asymptotically and the outgassing rate undergoes exponential decay, even after a long time under vacuum, the chamber, theoretically, will never quite reach a stable pressure. But variations in vacuum gauge calibration, room temperature, pumping speed, backstreaming from the pump, etc., mask or counter any real pressure reduction and the chamber appears to have reached a steady state. Often what happens is: the operator pumps the chamber for a few hours, grows tired of waiting, and claims the chamber is at base pressure. This is not necessarily wrong. After all, if the pressure falls from $5x10^{-7}$ Torr to $4x10^{-7}$ Torr by waiting another ten hours, is all that much gained? Perhaps it doesn't conform to formal definition, but in a sense the base pressure is reached whenever the operator says it is and starts using the chamber.

WORKING PRESSURE

The term base pressure defines conditions where no gas is deliberately flowing into the system. But sometimes the chamber is first pumped to its base pressure (to check for leaks or remove contamination) and then back-filled with a gas to an intermediate pressure. This is how processes such as sputter deposition, plasma etching, and CVD are done. This intermediate pressure is called the working pressure. To establish and maintain a working pressure, it is rarely sufficient to just close the pumping port, back-fill with gas, and walk away. Most back-fill applications require a flow of fresh gas to sweep away contaminants desorbing from the chamber walls. Often the back-fill pressure is stabilized with a feedback control system.

Pressure (Fractions of an Atmosphere)	Pressure (Torr)	Number Density (cm ⁻³)	Mean Free Path (cm)	Particle Flux (cm ⁻² sec ⁻¹)	Time for a Monolayer (sec)
1/1,000	0.76	2.7 x 10 ¹⁶	0.0065	2.9 x 10 ²⁰	3 x 10 ⁻⁶
1/10,000	7.6 x 10 °	2.7×10^{15}	0.065	2.9×10^{19}	3×10^{-5}
1/100,000	7.6 x 10°	2.7×10^{14}	0.65	2.9×10^{18}	3×10^{-4}
1/1,000,000	7.6 x 10⁺	2.7×10^{13}	6.5	2.9×10^{17}	3 x 10 ⁻³
1/10,000,000	7.6 x 10°	2.7×10^{12}	65	2.9×10^{16}	3×10^{-2}
1/100,000,000	7.6 x 10°	2.7×10^{11}	650	2.9×10^{15}	3×10^{-1}

ULTIMATE PRESSURE

Vacuum pump manufacturers gives two specifications: pumping speed and ultimate pressure (also called ultimate vacuum). The ultimate pressure is measured by capping the pump's inlet and finding the equilibrium pressure after operating the pump for many hours. Because it is measured under "ideal" circumstances, it is crucial to remember that a chamber connected to this pump will never reach the quoted ultimate pressure! Perhaps worse, pump manufacturers measure the ultimate pressure of mechanical pumps using a McLeod gauge that cannot measure vapors such as pump oil and water. Consequently, the so-called ultimate (partial) pressure of a rotary vane pump may be quoted in the 10⁻⁵ Torr range, causing much confusion when the practical ultimate pressure (using a gauge that responds to oil and water vapor) is two decades higher.

FLOW REGIMES

The mean free path (described above) and the chamber/component dimensions determine the gas's flow conditions or flow regime. If the mfp is:

- Very short compared with the chamber's 'characteristic dimension's', the gas is in *continuum* flow
- Shorter than the chamber's characteristic dimensions but approaches them, the gas is in *transitional* flow
- Equal to or longer than the chamber's characteristic dimensions then the gas is in *molecular* flow

The flow regime is used to identify the appropriate equations needed to calculate conductances, pump down times, and other characteristics.

VACUUM DOESN'T SUCK!

There is a common misunderstanding that vacuum pumps suck. *There is no such force as suction.* If the gas molecules in one "section" of a vacuum volume could be instantaneously removed, molecules from the remaining section, in their normal high-speed flight, would randomly collide and bounce off walls until they filled the whole volume at a lower pressure.

For vacuum pumping, this means that until a gas molecule in its random flight enters the pumping mechanism, that molecule cannot be removed from the volume. In effect the pump acts like a one-way valve: gas molecules may enter but not return. But for that to happen, molecules must first arrive at the pump...it cannot reach out and grab them. Understanding that *vacuum doesn't suck* makes the basic aspects of vacuum technology much easier to grasp.

CONDUCTANCE

Vacuum technology novices have difficulty distinguishing conductance from pumping speed (discussed later). These terms seem to describe similar concepts and use identical flow units of volume per unit time. But they should not be confused.

The formal definition of conductance is: The ratio of throughput, under steady-state conservation conditions, to the pressure differential between two specified isobaric sections inside the pumping system.

PRACTICAL INTERPRETATION

The conductance of a 'passive' vacuum component (e.g. tube, nipple, elbow, tee, valve, non-cooled baffle, etc.) is a measure of that component's ability to transmit gas molecules from end-to-end in some given time. High conductance is of paramount importance in achieving rapid chamber pump down times and low base pressures. One characteristic that determines conductance is the clear diameter of the opening through the component. A wide opening offers a bigger target for molecules to enter during their

random flights around the chamber and, obviously, until a molecule enters the component it cannot be transmitted. Another characteristic is the number of wall collisions molecules make during their transmission through the component. When molecules hit surfaces they are not reflected like

GAS CONDUCTANCE OF A PASSIVE COMPONENT

light from mirror. Rather, they "stick", often for a very short time, lose all information about their arrival direction, and desorbs following a cosine distribution. This distribution gives the molecules an equal chance of heading in either direction along the tube and a maximum probability of heading diametrically across the tube. The more surface hits a molecule makes, the less likely it is to complete the journey quickly and the lower is that component's conductance.

CONDUCTANCE UNITS

Conductance is a volumetric flow measured in units of volume per unit time, specifically: liters per second (L/s); cubic meters per hour (m3/h); cubic feet per minute (cfm); liters per minute (L/m); etc. Expressing conductances as volumetric flows has two benefits: (a) conductances can be combined by simple math (see below) and (b) in the molecular flow regime, a component's conductance is constant and independent of pressure.

CALCULATING CONDUCTANCES

The time to calculate conductances is before any vacuum component is purchased. The approximate operating characteristics of a soon-to-be-built or about-to-be-modified system should be known while it is still a scratch-pad idea. When the system is constructed, it is a trivial matter to reduce conductance but an expensive re-build to increase conductances that are too low.

MANUAL CALCULATION

Since conductance in molecular flow is independent of pressure and since most high vacuum applications are in molecular flow, the calculations discussed here and in the sidebar are appropriate only for that flow regime. Two books edited by J.M. Lafferty are invaluable when making conductance calculations. The first is *Scientific Foundations of Vacuum Technique*, by Saul Dushman, 2nd ed., J.M. Lafferty, editor, from which we have reprinted a table from p.99 with permission from John Wiley & Sons ©1962. The second is *Scientific Foundations of Vacuum Science and Technology*, J.M. Lafferty, editor, John Wiley & Sons ©1998 which has a chapter by R. Gordon Livesey with a wealth of information and equations for calculating conductances in molecular, transitional, and continuum flow regimes. Examples of conductance calculations for straight cylindrical components using Dushman's table are given in the sidebar. To calculate conductances of non-cylindrical components, find the appropriate equation in Lafferty's 2nd book or, for less accurate estimates, use Dushman's table and some rules of thumb:

- Right-Angle Bends: Measure the tube length "L" as the shortest distance (along the inside of the bend). Calculate the conductance from the table as if the tube were straight, and then divide by 2 for every right-angle bend.
- Non-Cylindrical Cross-Section: Calculate the "open" area of the tube or annulus and find the radius of a cylindrical tube with an equal area. Calculate the conductance of this "equivalent tube".
- Diameter Changes: If a tube changes diameter along its length, the safest way to calculate conductance is to use the smaller diameter to calculate "a" (the radius). But if the smaller diameter portion is short compared to the total tube length, the underestimation may be extreme. In such cases, calculate the conductance of the small diameter and large diameter section as separate tubes and combine them in series (see *Combining Conductances*).

			F _t Conduc	tance of Tul	oe (liters se	c. ⁻¹) for air a	t 25° C	
a	Fo	L/a = 1	2	4	8	12	16	30
(Cin)		K = 0.672	0.514	0.359	0.232	0.172	0.137	0.080
0.1	0.367	0.246	0.188	0.132	0.085	0.063	0.050	0.029
0.2	1.466	0.986	0.753	0.527	0.340	0.252	0.200	0.117
0.3	3.300	2.217	1.664	1.184	0.764	0.567	0.451	0.263
0.4	5.866	3.943	3.013	2.106	1.358	1.008	0.802	0.468
0.5	9.166	6.160	4.708	3.291	2.122	1.575	1.253	0.731
0.6	13.200	8.872	6.779	4.739	3.057	2.269	1.805	1.052
0.7	17.970	12.080	9.228	6.449	4.161	3.088	2.457	1.432
0.8	23.470	15.770	12.050	8.424	5.436	4.033	3.208	1.871
0.9	29.700	19.960	15.250	10.660	6.879	5.105	4.061	2.368
1.0	36.660	24.640	18.830	13.160	8.492	6.302	5.013	2.922
2.0	146.600	98.560	75.340	52.650	33.970	25.210	20.050	11.690
3.0	330.000	221.700	166.400	118.400	76.420	56.710	45.110	26.300
4.0	586.600	394.300	301.300	210.600	135.800	100.800	80.210	46.770
5.0	916.600	616.000	470.800	329.100	212.200	157.500	125.300	73.100
6.0	1320.00	887.200	677.900	473.900	305.700	226.900	180.500	105.200
7.0	1797.00	1208.00	922.800	644.900	416.100	308.800	245.700	143.200
8.0	2347.00	1577.00	1205.00	842.400	543.600	403.300	320.800	187.100
9.0	2970.00	1996.00	1525.00	1066.00	687.900	510.500	406.100	236.800
10.	3666.00	2464.000	1883.000	1316.000	849.200	630.200	501.300	292.200

COMBINING CONDUCTANCES

Since a component's conductance in molecular flow is independent of pressure and is quoted as a volumetric flow, conductances for various components can be combined in series or parallel. If two chambers are connected together by: (a) a narrow tube on chamber 1; (b) a right angle valve; and (c) a large port on chamber 2, their separate conductances can be combined as reciprocals to give a total conductance between the two chambers (see sidebar *Series Conductances*). Notice that the total conductance is much less than any individual conductance. In addition, look at the table. Here, just two conductances, one variable and the other fixed at 10 L/s, are added together. The Total Conductance column demonstrates a critical rule in series conductances— *the smallest conductance rules*.

Alternatively, if two chambers are connected by two tubes of different diameters, each tube has its own conductance. To determine the total conductance between chambers simply add the conductances together (see sidebar *Parallel Conductances*).

COMPUTER CALCULATIONS

Calculating Conductance

The conductance of an **orifice**—a hole in an infinitely thin plate—is determined as follows:

- Measure the orifice's radius in centimeters.
- Enter the table at the appropriate "a" (radius) row. Go right to the F₀ column and read the conductance in L/s.

The conductance of a **straight cylindrical tube** is calculated as follows:

- Measure the (overall) length of the tube in any convenient units.
- Measure the tube's I.D. in the same units.
- Divide the I.D. by 2 to give the radius.
- Divide the length by the radius (this gives the "L/a" ratio used in the table).
- Convert the radius to centimeters (this gives "a" (cm) to use in the table).

• Enter the table at the appropriate "a" row. Go right until under the value of the calculated "L/a" ratio. If the exact match is not available, use the next larger "L/a" value or interpolate. A component's conductance in continuum or transitional flow depends on gas pressure and uses different equations than those governing molecular flow. Calculating conductances from atmospheric pressure to high vacuum requires iterative processes ideally suited to computer calculation. PEC's VacTran, described on page 17-21, is an exceptionally powerful program for vacuum technology calculations including the calculation of series and parallel conductances for any pressure range and many different cross-sectional shapes (cones, slots, ovals, annuli, and triangles).

PUMPING

The formal definition of pumping speed is: The ratio of the throughput of a given gas to the partial pressure of that gas at a specific point near the inlet port of the pump.

PUMPING INTERPRETATION

With less formality, but perhaps more clarity, pumping speed is a measure of the pump's ability to permanently remove gas from its inlet port.

Conductance	Conductance	Total Conductance
C1	C2	1/(1/C1 + 1/C2)
10	10	5 L.sec.
10	100	9.1 L/sec.
10	1,000	9.9 L/sec.
10	10,000	9.99 L/sec.
10	100,000	9.999 L/sec.
10	1,000,000	9.9999 L/sec.

Series Conductances

Series conductances are added as reciprocals: 1/Ctotal = 1/C1 + 1/C2 + 1/C3 Given: Narrow Tube—120 L/s (C1) Angle Valve—230 L/s (C2) Large Port—1,400 L/s (C3) The total conductance is: $1/C_{total} = 1/120 + 1/230 + 1/1,400$ $1/C_{total} = 0.0083 + 0.0043 + 0.0007$ $1/C_{total} = 0.01339$ Ctotal = 1/ 0.01339 Total Series Conductance = 74.6 L/s

Parallel Conductances

Using two conductances simultaneously between two chambers or between a chamber and pump is not common but such arrangements do occur and are easily calculated. Suppose the two tubes have conductances of 1,800 L/s and 2,300 L/s. The total conductance is:

 $C_{total} = C1 + C2$

 $C_{total} = 1,800 + 2,300$

Total Parallel Conductance = 4,100 L/s

PUMPING SPEED UNITS

Pumping speed is a volumetric flow measured in units of volume per unit time – specifically: liters per second (L/s); cubic feet per minute (cfm); cubic meters per hour (m^3/h); or liters per minute (L/m). As with conductance, expressing pumping speed as volumetric flows has the benefits that pumping speed and conductances can be combined by simple math (see *Effective Pumping Speed*).

PUMPING SPEED CURVES

Various standards organizations in the US, Europe, and Asia have specified methods for measuring *pumping speed*. As far as we are aware, all suggest capping the pump with a small volume dome at its inlet port and monitoring the pressure at various gas flow rates into the dome (from a calibrated mass flow controller). The results are plotted as *pumping speed* vs. *pressure* as shown in Figure 2. Because a pump's pumping speed is measured under ideal conditions, its

numerical value will be unobtainable in a practical system—the connection between any pump and any chamber affects the pumping speed (see *Effective Pumping Speed*).

DISPLACEMENT AND CAPACITY

Unfortunately, many mechanical pump manufacturers quote a value called *free air displacement* or *capacity* for their pumps. The units are volumetric flow rate and the value is easily mistaken for a measured pumping speed. However, displacement/capacity appears to be a theoretical pumping speed the pump might have if the gas had no mass or viscosity; negotiated the entrance port and constrictions into the pumping mechanism instantaneously; and did so without turbulence or boundary layer effects. Why pump manufacturers indulge in such an exaggeration is unknown. It only confuses those attempting vacuum calculations. We strongly suggest displacement/capacity values be ignored or, in the absence of a measured pumping speed, multiplying displacement by ~0.75 to get an approximation of the real pumping speed.

EFFECTIVE PUMPING SPEED (EPS)

WHAT IS EPS?

As pointed out above, a pump's quoted pumping speed is the maximum value measured under ideal conditions. In practical situations, a pump is connected to a chamber via a series of passive components such as a tube, valve, and perhaps a trap. Each passive device has its own ability to transfer gas, and clearly that ability will affect the flow of gas from chamber to pump inlet. It is the combination of the conductances of these passive devices and the pumping speed of the pump that determines the overall pumping speed from the chamber, called the *effective pumping* speed (EPS) or sometimes the delivered pumping speed. (We will use the former.) The EPS's value is critical since it determines the chamber's pump-down characteristics and base pressure. Since EPS is a combination of conductance and pumping speed, it retains the units of volume per unit time, such as: liters per second (L/s); cubic feet per minute (cfm); cubic meters per hour (m^{3}/h) ; or liters per minute (L/m).

CALCULATING EPS

Consider a 500 L/s high vacuum pump connected to a chamber by a pumping

port of 4" (10 cm) internal diameter x 4" (10 cm) long. Calculating the port's conductance from Dushman's table gives ~500 L/s. Pumping speed and conductance are combined to give the EPS in exactly the same way two series conductances are combined.

1/EPS = 1/PS + 1/C

So a 500 L/s pump and a 500 L/s port combine as 1/500 + 1/500. That is, the EPS from the chamber is 250 L/s. The simplest connection between pump and chamber halved the pump's quoted pumping speed. Obviously, this is a serious issue and adding a trap or valve to the connection can only further reduce the pumping speed from the chamber. Unfortunately, all too often we see connections between pump and chamber that are just plain silly. For example, a 500 L/s diffusion pump connected to a chamber by a 0.7" (1.8 cm) I.D. x 1.42" (3.6 cm) long tube. Dushman's table gives the tube's conductance as ~10.7 L/s. Combining this with the pump (1/500 + 1/10.7) gives

Measuring EPS

One method of measuring EPS uses the fact that in molecular flow the system follows firstorder reaction kinetics:

Pfinal = Poriginal X e-kt

Integrating with respect to time EPS = V/t x log_{*}(P₂/P₁)

Where V is chamber volume, t is time, and P_o and P_f are the start and final pressures. Example: a 150 L chamber has a base pressure of 1 x 10^s Torr. Gas is injected through a valve at a rate that keeps the pressure at 4 x 10⁻⁴ Torr with the pumps operating. The valve is shut at time zero 0 s and 16 s later the chamber has reached 6 x 10^s Torr.

- EPS = 150/16 x log_e(4 x 10⁴/6 x 10⁶)
- EPS = 9.38 x log=66.67
- EPS = 9.38 x 4.2

EPS = 39 L/sec.

Limitations to measuring the EPS this way:

- Formula only works for molecular flow conditions.
- * Results are invalid if P_{\bullet} edges into transitional flow.
- If Pr is <50x the chamber's base pressure, wall outgassing will affect the time measurement.

Other measurement methods are under Tech Info at www.lesker.com.

an EPS of ~10.5 L/s. There is no clearer illustration of the maxim: the smallest conductance rules.

GAS LOAD

WHAT IS GAS LOAD?

When discussing pressures and pumping, we are really speaking about molecules in the gasphase, which are the only ones we can measure or pump. However, if we could remove all gas-phase molecules instantaneously from a vacuum vessel, the result would not be zero pressure. Molecules are continuously entering the gas phase from various sources which can be summarized as:

- Real leaks at welds, gaskets, flanges, or porous construction materials
- Virtual leaks such as trapped volumes at welds, screw threads, or mating surfaces
- Outgassing, which includes gas/vapor...
 - Desorbing from the wall surfaces (which is important enough to warrant its own section)
 - Diffusing from the wall matrix
- Evaporation of materials with high vapor pressure
- Permeation through elastomeric gaskets
- Permeation through the glass or walls
- Backstreaming gases from the pump
- Backstreaming oil vapor from an oil-sealed pump
- Backstreaming condensable vapors (e.g. solvents) coming out of the pump oil
- Desorbing gas from a saturated trap
- **Desorbing gas** from a cryogenic trap with a falling cryogen level
- Deliberately injected gas required by the process

The rate at which molecules enter into the chamber's gas phase from all these sources is called the chamber's gas load.

GAS LOAD UNITS

Gas load is a mass flow rate and is measured in units of **volume x pressure per unit time**, such as: Torr.liters per second (T.L/s); mbar.liters per second (mbar.L/s); Pascal.cubic meters per hour (Pa.m³/h); Torr.liters per minute (T.L/m); or std.cubic centimeters per minute (sccm).

OUTGASSING

WHAT IS OUTGASSING?

In a well-designed, well-constructed vacuum system, in the absence of deliberately injected gas, the major contributor to the gas load is the desorption of gases/vapors from the vacuum surfaces - *outgassing*. More specifically, the outgassing rate is the amount of gas leaving some unit area of surface in unit time.

OUTGASSING RATE UNITS

Any combination of units for pressure, volume, area, and time, can be used but there are just three combinations commonly quoted:

- Torr x liter per square centimeter per second (mostly in the USA)
- millibar x liter per square centimeter per second (mostly in Europe)
- pascal x cubic meter per square meter per second (the SI unit)

NOTE: By manipulating units the last combination can be transformed into the seemingly bizarre but correct W/m^2 and is quoted this way in some literature collections. To transform rates in W/m^2 into Torr-L/(cm²-s) divide the former value by 1,333.2.

OUTGASSING SOURCES

Surfaces are active places that absorb gases and vapors to reduce the 'unfulfilled' bonding forces of the surface atoms. This means that all surfaces, no matter what material is under consideration, outgas under vacuum. Some of the worst materials are: plastics, elastomers, and glues; porous ceramics and porous metals; lubricating, sealing, or heat transfer greases; and us (fingerprints, hair, skin cells, dust mites, spittle droplets when talking, and food)! The most common gases/vapors outgassing from surfaces are: water vapor; oil and grease vapors; solvents and volatile organic materials; and (when approaching ultrahigh vacuum pressures) hydrogen and carbon monoxide from stainless steel used in the chamber's construction.

REDUCING OUTGASSING

As stated above, nothing can be pumped from the chamber until it is in the gaseous phase. The outgassing rate is reduced by methods that cause adsorbed gas/vapor to enter the gaseous phase:

- Heat: baking the chamber increases the desorption rate of the gas/vapor
- Light: intense short wavelength UV breaks bonds between surface and adsorbed gas/vapor
- Plasma: active plasma products break bonds and react with adsorbed gas/vapor forming more volatile compounds
- Chemistry: reactive chemical vapors convert adsorbed water into HCI (very limited utility)

THROUGHPUT

WHAT IS THROUGHPUT?

Pump manufacturers supply pumping speed vs. pressure curves for each pump. Multiplying pumping speed at some pressure by that pressure gives a measurement called *throughput* (or sometimes *pump throughput*). It is essentially a measure of the *quantity* of gas the pump removes from its inlet in unit time, where the word *quantity* can be substituted by *amount, mass,* or *number of molecules*.

THROUGHPUT UNITS

Throughput is a mass flow rate and is measured in units of **volume x pressure per unit time**, such as: Torr.liters per second (T.L/s); mbar.liters per second (mbar.L/s); Pascal.cubic meters per hour (Pa.m³/h); Torr.liters per minute (T.L/m); or std.cubic centimeters per minute (sccm).

MEASURING THROUGHPUT

One method of measuring/calculating *(effective) throughput* is to measure/calculate the EPS from the chamber (see above) and multiply that value by the chamber pressure. As an example: the measured EPS is 83 L/s when the chamber's working pressure is 5×10^{-6} Torr. The effective throughput is then: 83 L/s x 5×10^{-6} Torr which is **4.15 x 10^{-4} Torr.L/s**

Another measurement method is listed under Tech Info at www.lesker.com.

GAS LOAD & THROUGHPUT

COMPARISON & CALCULATIONS

The *gas load* was defined above as the total amount of gas entering the system while *throughput* is the total amount of gas leaving the system. Both have units of *volume x pressure per unit time*. The critical point here is to recognize that when the chamber's pressure is constant, *gas load* must equal *throughput*. To express the concept fully: the mass of gas entering the system in a given time must equal the mass of gas leaving the system in the same time or the pressure will change. To use a less rigorous but more memorable expression, at constant pressure:

Gas In = Gas Out

This identity is used when sizing pumps for applications that have known mass flow of gas injected. The common unit for measuring mass flows of gas is *standard cubic centimeters* per *minute* or *sccm*, popularly called "skims". (Note the units: *standard* refers to 760 Torr or 1013.2 mbar at 0° C; *cubic centimeters* is a volume; and *minute* is, obviously, time). As an example, let us calculate the pumping speed needed to maintain a working pressure of ~13 mTorr when injecting 100 sccm of argon. First we convert the gas flow units (sccm) into pump flow units (say L/s if we are dealing with a high vacuum pump situation or cfm, L/m, etc. for a roughing pump). Here we will consider just a high vacuum pump:

100 sccm = 100 x 760 Torr.ccm = (100 x 760)/1000 Torr.liter/min = (100 x 760)/(1000 x 60) Torr.liter/sec

Gas In = 1.27 T.L/s

Since *Gas Out* must also equal 1.27 T.L/s and we know the chamber pressure must be ~13 mTorr with the gas flowing, we calculate the minimum effective pumping speed by dividing 1.27 T.L/s by 0.013 T:

1.27/0.013 = ~100 L/s Minimum effective pumping speed 100 L/s

Clearly, the pump's quoted pumping speed must be higher than this since the pumping port's conductance will reduce it. However, it can be much higher and simply trimmed to 100 L/s using a throttle valve between chamber and pump.

PUMP-DOWN TIMES

MANUAL CALCULATIONS

Can pump-down time be calculated? The short answer is yes. But the longer answer is: this is an iterative process involving exponential decay and manual calculation can be involved and tedious, even using a spreadsheet program.

COMPUTER CALCULATIONS

Over the years, computer algorithms have been developed for iterative techniques needed to calculate conductances, throughputs, gas loads, effective pumping speeds, and pumpdown times across continuum, transitional, and molecular flow regimes using the available formulas from vacuum technology. Typically, the user keys in the pump's pumping speed curve, chamber dimensions, surface outgassing rates, start/finish pressure, etc., and the calculations are done automatically with the program choosing the appropriate formula at each iteration. We have used successive updates of the VacTran[®] program (from Professional Engineering Computations) for over 17 years. We find it invaluable and, of the programs we have examined, the easiest to use and most versatile. VacTran is particularly valuable during system re-design. The existing system's measured pump-down characteristics determine the real gas load which is used for the model. The designer then makes the proposed design changes on the model and re-runs pump-down iterations. Since the model's gas load reflects reality, the calculated results closely parallel real-world experience when the re-design changes are made. If you have a one-time question to which VacTran[°] can be applied, try our Tech Info service at techinfo@lesker.com and we may be able to help. If you are facing vacuum design issues that involve a number of 'what if' conditions, we urge you to buy this program. But note, successful computer modeling depends on the nature of the problem and the operator's understanding of vacuum technology.

SLOW PUMPDOWN

At techinfo@lesker.com a frequently asked question runs along these lines: "Pumping from atmosphere to 1×10^{-6} Torr is taking over five hours. What's the problem?" Obviously, there is no hope of answering without a long assessment that could easily be made by the questioner:

- Given the chamber's volume, cleanliness, pumps used, conductance from chamber to pumps, is a pump-down time of <5 hours reasonable?
- Is this the first time the chamber has been pumped down?
- Does it take five hours for every pump down?
- Has the time slowly increased?
- Has the time suddenly increased? Let's examine each of these questions.

- A) Is the chamber volume very large and the rough pump speed very small?
- B) Does the chamber contain very large surface areas and is the high vacuum pump small?
- C) Is the high vacuum pump's base pressure close to 1 x 10-6 Torr?
- D) Are the chamber walls clean or dirty, oily, pitted, or corroded?
- E) Does the high vacuum pumping port have the same I.D. as the high vacuum pump inlet?
- F) Is the high vacuum pumping port's length more than 3 times its I.D.?

"FIRST PUMP-DOWN"

- A) Patience! The initial pump-down removes the loosely bound vapor layers absorbed on every surface. Regard it as 'vacuum conditioning'. Pump the system for several hours, let up to atmosphere with dry nitrogen and pump-down again. Then, if the pumpdown still takes five hours, consider B and C.
- B) Examine the simple things that can cause long pump-down: check for leaks with a leak detector; regenerate the foreline trap; check that gas inlet valves are fully closed; consider the outgassing characteristics of the construction materials; check that the cross-over pressure is appropriate for both rough and high vacuum pumps; check if the foreline pressure is at an acceptable value for the high vacuum pump.
- C) Did someone goof in the original design? Check using a computer modeling program such as **VacTran**[®]. When you allow for typical outgassing rates, are the results consistent with the measured pump-down time?

"FIVE HOURS EVERY TIME"

Convince yourself the system does not leak and then, using **VacTran**[®], model the system. Check that the calculated pump-down time is similar to the measured one. If not, add outgassing sources (roughly modeling the real parts in the chamber) until the pump-down time equals 5 hours. Now you have two options:

- A) Reduce the gas load by either: (a) modeling the removal of non-essential components or reducing surface areas; or (b) modeling a reduced outgassing rate achieved by baking or plasma cleaning; this is usually the least expensive option to improving pump-down times
- B) If little can be done about the total gas load, play 'what if' games with the model by changing pumps and conductances to see what must be done to improve the pump-down time. This is always an expensive option.

"SLOWLY GOTTEN WORSE"

Time to consider maintenance issues:

- A) Is the fluid in any oil-sealed pump contaminated with a vapor?
- B) Are the foreline or system traps overloaded?
- C) Is something inside the chamber thermally decomposing?
- D) Have the fill-full sensors of an LN2 trap changed position?
- E) Are the chamber walls contaminated with oil from the pumps?
- F) Are o-rings aging due to high temperatures?
- G) Does the cryo-pump need regeneration?

More potential issues can be added but the real question is, can the main cause be detected? Fortunately, in most cases the answer is yes, so attach an RGA. Of course, there are drawbacks: RGAs are not cheap and you must learn to interpret spectra. But, as a vacuum diagnostics tool, the RGA has no equal.

"SUDDENLY GOTTEN WORSE"

- A) Check your vacuum system's logbook. What did you last do? Change a flange or gasket? Add a component? Change the pump fluid? Then check that the change did not cause a leak, increase the outgassing rate, or reduce the effective pumping speed.
- B) If the sudden increase in base pressure occurs after the first chamber bakeout or after three or four pump-downs following system commissioning (when no changes have been made), then make another leak check of the whole system. Real leaks are easily blocked by ice (the effect of vacuum on water trapped in the leak during the final chamber cleaning) or a combination of machining oils and "residues." When the blockage evaporates or disperses, suddenly the chamber has a leak that was previously not there.

UNIT CONVERSION TABLES

Pressure Units

Pressure Units	Atmosphere	Bar	dynes/cm ²	in. Hg	in. Water	kg/cm ²	mbar	mTorr	Pa	psi	Torr
1 atm.	1	1.01325	1.01325 x 10 ⁶	29.9212	406.78	1.03322	1013.25	7.6 x 10⁵	1.01325 x 105	14.696	760
1 bar	0.9869	1	1 x 10°	29.53	401.46	1.0197	1,000	7.5006 x 10 ⁵	1 x 10 ⁵	14.504	750.06
1 dyne/cm ²	9.869 x 107	1 x 10 ⁻⁶	1	2.953 x 10 ⁵	4.0146 x 10 ⁻⁴	1.0197 x 10*	1 x 10°	0.75006	0.1	1.4504 x 10 ⁸	7.5006 x 10 ⁴
1 in. Hg	3.342 x 10 ⁻²	3.386 x 10 ²	3.386 x 104	1	13.595	3.4532 x 10 ⁻²	33.863	2.54 x 10 ⁴	3.3864 x 103	0.4912	25.4
1 in. water	2.458 x 10 ⁻³	2.491 x 10 ^a	2.491 x 103	7.356 x 10 ²	1	2.54 x 10 ³	2.4909	1.868 x 103	2.4909 x 10 ²	3.613 x 10 ²	1.868
1 kg/cm ²	0.9678	0.9807	9.807 x 105	28.959	3.937 x 10 ²	1	9.8067 x 10 ²	7.3556 x 10 ⁶	9.8067 x 10 ⁴	14.223	7.3556 x 10 ²
1 mbar	9.869 x 104	1 x 10 ⁻³	1 x 10 ³	2.953 x 10 ²	0.4015	1.0197 x 10 ⁻³	1	7.5006 x 10 ²	100	1.450 x 10 ²	0.75006
1 mTorr	1.316 x 10 ⁶	1.3332 x 10 ⁶	1.3332	3.927 x 105	5.352 x 10 ⁴	1.3595 x 10 ⁻⁶	1.3332 x 10 ⁻³	1	0.13332	1.934 x 10 ^s	1 x 10 ^a
1 Pa	9.869 x 10 ⁻⁶	1 x 10 ⁵	10	2.953 x 104	4.0146 x 10 ⁻³	1.0197 x 10 ⁻⁵	0.01	7.5006	1	1.4504 x 10⁴	7.5006 x 10 ⁻³
1 psi	6.805 x 10 ⁻²	6.895 x 10 ²	6.895 x 104	2.036	27.68	7.031 x 10 ²	68.95	5.1715 x 10 ⁴	6.8948 x 103	1	51.715
1 Torr	1.316 x 10 ³	1.333 x 10 ^a	1.333 x 10°	3.937 x 10 ²	0.5352	1.360 x 103	1.3332	1 x 10 ³	1.3332 x 10 ²	1.934 x 10 ²	1

Pumping Speed Units

Flow	CFM	L/min	L/s	m∜hr	m³/min
1 CFM	1	28.317	0.47195	1.69902	2.8317x10 ²
1 L/min	3.5311x10-2	1	1.6667x10 ²	6.0x10-2	0.001
1 L/s	2.11887	60	1	3.6	0.06
1 m ³ /hr	0.5885	16.667	0.27778	1	1.6667x10 ²
1 m³/min	35.311	1,000	16.667	60	1

Mass Flow Units

sccm	micron.L/s	molecules/s	Pa.L/s	Torr.L/s
1	12.667	4.4807x10 ¹⁷	1.6887	1.2667x10 ⁻²
7.895x10*	1	3.5374x10 ¹⁶	0.1333	0.001
2.232x1018	2.827x1017	1	3.769x1018	2.827x10 ²⁰
0.5922	7.50	2.653x1017	1	7.5x10 ^a
78.95	1,000	3.537x1019	1.333x10 ²	1
	sccm 1 7.895x10 ² 2.232x10 ¹⁶ 0.5922 78.95	sccm micron.L/s 1 12.667 7.895x10² 1 2.232x10¹is 2.827x10¹i7 0.5922 7.50 78.95 1,000	sccm micron.L/s molecules/s 1 12.667 4.4807x10 ¹⁷ 7.895x10 ² 1 3.5374x10 ¹⁶ 2.232x10 ¹⁶ 2.827x10 ¹⁷ 1 0.5922 7.50 2.653x1017 78.95 1,000 3.537x1019	sccm micron.L/s molecules/s Pa.L/s 1 12.667 4.4807x10 ¹⁷ 1.6887 7.895x10 ² 1 3.5374x10 ¹⁶ 0.1333 2.232x10 ¹⁸ 2.827x10 ¹⁷ 1 3.769x10 ¹⁶ 0.5922 7.50 2.653x1017 1 78.95 1,000 3.537x1019 1.333x10 ²

(Note: 1sccm = 1.0916 atm.cc/min at 25° C)

Leak Rate Units

Leak Rate	atm.cc/s	Pa.m³/s	Torr.L/s	mbar.L/s	micron.L/s
1 atm.cc/s	1	0.1013	0.76	1.013	7.6x10 ²
1 Pa.m3/s	9.869	1	7.50	10	7.50x10 ³
1 Torr.L/s	1.316	0.1333	1	1.333	1000
1 mbar.L/s	0.9869	0.1	0.75	1	7.50x10 ²
1 micron.L/s	1.316x10 ^a	1.333x104	0.001	1.333x10 ³	1

Outgassing Rate Units

Outgas Rate	mbar.L/(cm ² .s)	Pa.L/(m ² .s)	Pa.m³/(m².s)	W/m²	Torr.L/(cm ² .s)
1 mbar.L/(cm ² .s)	1	1x10 ^e	1x10 ³	1x10 ³	0.75
1 Pa.L/(m ² .s)	1x10*	1	1x10 ³	1x10*	7.5x10 ⁷
1 Pa.m3/(m2.s)	1x10ª	1x10 ^s	1	1	7.50x10⁴
1 W/m ²	1x10ª	1x10°	1	1	7.50x10⁴
1 Torr.L/(cm ² .s)	1.333	1.333x10*	1.333x10 ³	1.333x10°	1

Weights & Measures

To Convert	Into	Multiply By
ampere-tum	gilbert	1.257
ampere-tum/cm	ampere-tum/in	2.54
ampere-turn/in	gilbert/cm	0.495
ampere-tum/in	ampere-turn/cm	0.3937
ampere/cm ²	ampere/in ²	6.452
angstrom	microinch	0.00393
angstrom	millimicron	0.1
angstrom	cm	10*
angstrom	nanometer	0.1
angstrom	micron	104
b/mil ft	grams/cm ³	2.306x10*
Btu	joule	1054
Btu	kilowatt-hour	2.929x104
Btu	ft-Ib	777.6
Btu/minute	watt	17.57
calorie (kg)	joule	4184
calorie (kg)	Btu	3.968
calorie (kg)	horsepower hr	1.558x10 ^a
calorie (kg)	ft-lb	3086
calories (kg)	kilowatt-hour	1.162x10 ^a
circular mil	cm ²	5.067x10*
circular mil	in ²	7.854x10 ⁻⁷
circular mil so	mi	0.7854
cm	mi	393.7
cm	inch	0.3937
cm	angstrom	10 ⁸
cm ²	ff	1.076x10 ^a
cm ²	circular mil	1.974x105
cm ²	in ²	0.155
cm ³	gallon	2.642x10+
cm ³	in ³	6.102x10 ²
cm ³	quarts (liquid)	1.057x10 ^a
cm ³	liter	10*
cm ³	ft ^e	3.531x10*
cm ³	pints (liquid)	2 113x10 ³
coulombs/in ²	coulombs/cm ²	0.155
degree (angle)	minute	60
degree (angle)	second	3600
degree (angle)	radian	0.01745
dearee/sec	radian/sec	0.01745
degree/sec	revolution/sec	0.002778
degree/sec	rpm	0.1667
dyne	pound	2.248x10*
dyne	gram	1.020x10 ^a
dynes/cm ²	bar	10*
erg	dyne-cm	1
erg	kg-meter	1.020x10*
erg	gram-cm	1.020x10 ^a
erg	ft-Ib	7.376x10*
erg	kg-calorie	2.390x10-11
erg	joule	10-7
erg	Btu	9.486x10-11
ergs/sec	Btu/min	5.691x10°
ergs/sec	kilowatt	1010
ergs/sec	ft-lb/min	4.42x10*
feet	cm	30.48
feet	meter	0.3048
ft-lb	meter-kilogram	0.1383
ft-lb	cm-gram	13.826
ft-lb	cm-dyne	1.356x107

To Convert	Into	Multiply By
ft ²	in ²	144
ft ²	m ²	0.0929
ft ²	cm ²	929
ft ³	b. water	62.4
ft ^a	liter	28.32
ft ³	nint (liquid)	59.84
fla	cm ²	2 832x104
fla	in ³	1728
ft ³	m ³	0.02832
ft ³	quart (liquid)	29.92
ft ³	nallon	7 481
ft ³	yd ³	0.03704
ft ³ /min	rallon/sec	0.1247
fl ^s /min	cm ³ /sec	471.9
fl ^s /min	liter/sec	0.4719
gallon	quart (liquid)	4/15
gallon	liter	3 795
gallon	- Cm ³	3785
gallon	pint (liquid)	8
gallon	pint (liquid) #3	0 1227
galon	il. Ih water	8 2.4
gallon	io. water	0.34
gallon	m ³	2 795 v 10-3
gallon/min	liter/con	0.064
gallon/min	iller/sec	0.004
gallon/min	IT/Sec	2.220X10*
gauss	lines/in	0.452
giben	ampere-turn	0.7958
gram	OZ dura	0.0352/
gram	dyne	980.7
gram	ID Div	2.205X10-3
gram-calone	Btu	3.968x10*
gram-cm	kg-meter	10-0
gram-cm	joule	9.807×10-5
gram-cm	ft-ID	7.233x10 ⁻⁵
gram-cm	erg	980.7
gram-cm	Btu	9.302x10-8
gram-cm	kg-calorie	2.344x10*
gram/cm	lb/in	5.6x10 ⁻³
gram/cm*	Ib/circular mil ft	3.405x10"
gram/cm ³	lb/in ³	0.03613
gram/cm ³	lb/ft ^a	62.43
horsepower	horsepower(metric)	1.014
horsepower	watt	745.7
in ²	ft ²	6.944x10 ⁻³
in ²	Cm ²	6.452
in	sq mil	10°
in ²	mm ²	645.2
in ²	circular mil	1.273x10 ^s
in	pint (liquid)	0.0346322
in ³	quart (liquid)	0.01732
in ⁴	liter	1.639x10-2
in	gallon	4.329x10 ⁻³
in'	m³	1.639x10*
in	ft ^s	5.787x10-4
in³	Cm ³	16.39
inch	angstrom	2.54x10°
inch	cm	2.54
joule	watt-hour	2.778x10-4
joule	kg-meter	0.102
joule	kg-calorie	2.390x10 ⁻⁴

To Convert	Into	Multiply By
joule	ft-lb	0.7377
joule	erg	10 ⁷
joule	Btu	9.486x104
kilogram	tons (short)	1.102x10 ⁻³
kilogram	lb	2.2046
kilogram (force)	dyne	980665
kilogram-meter	kilowatt-hour	2.724x10 ^s
kiloline	maxwell	10º
kilometer	mile	0.6214
kilometer	feet	3281
kilowatt	ft-lb/sec	737.6
kilowatt	ft-lb/min	4.425x104
kilowatt	Btu/minute	56.92
kilowatt-hour	kilogram-meter	3.671x10 ^e
kilowatt-hour	joule	3.6x10 ^s
kilowatt-hour	ft-lb	2.655x10 ^e
kilowatt-hour	Btu	3415
km/hour	m/min	16.67
km/hour	mile/hour	0.6214
km/hour	ft/sec	0.9113
km/hour	ft/min	54.68
km/hour	cm/sec	27.78
km²	ft ^a	1.076x10 ⁷
lb water	gallon	0.1198
lb water	in ³	27.68
b water	ft ^a	0.01602
lb water/min	ft%sec	2.669x104
lb/ft	kg/meter	1.488
b/ft ²	kg/m ²	4.882
lb/ft ²	ft. water	0.01602
lb/ft ²	lb/in²	6.944x10 ³
lb/in	grams/cm	178.6
lb/in ²	lb/ft ²	144
lb/in ²	kg/m²	703.1
b/in²	in. Hg	2.036

ft. water

atmosphere

gauss

gauss

quart (liquid)

pint (liquid)

gallon

ins

ft^a

gallon/sec

ft%sec

foot-candle

miles/hour

km/nour

ft/sec

miles/min

km/min

km/hr

ft/sec

ft/min

miles/hour

sq mile

ft2

quarts (liquid)

pints (liquid)

2.307 0.06804

1 0.155

1.057

2.113

0.2642

61.02

0.03531

4.403x103

5.885x104

1 0.03728

0.06 0.05468

0.03728

0.06

3.6

3.281

196.8

2.237

3.861x107

10.764

1057

2113

lb/ft b/ft² b/ft² b/ft² lb/in b/in² lb/in² lb/in²

lb/in²

lb/in²

lines/cm²

lines/in²

liter

liter

liter

liter

liter

liter/min

liter/min

lumen/ft^e

m/min

m/min

m/min

m/sec

m/sec

m/sec

m/sec

m/sec m/sec

m²

m² m³

m³

Weights & Measures

To Convert	Into	Multiply By	To Convert	Into	Multiply By
m ^a	gallon	264.2	radians/sec	revolutions/sec	0.1592
m³	in ^a	61024	radians/sec	rpm	9.549
m³	ft ³	35.31	revolution	radian	6.283
m³	Cm ³	10 ⁶	revolution	quadrant	4
maxwell	kiloline	36802	revolution	degree	360
megaline	maxwell	10 ⁶	revolutions/sec	rpm	60
meter	inch	39.37	revolutions/sec	radians/sec	6.283
meter	feet	3.2808	revolutions/sec	degrees/sec	360
meter	angstrom	10 ¹⁰	rpm	revolutions/sec	0.01667
mhos/mil ft	megmhos/in ³	15.28	rpm	radians/sec	0.1047
mhos/mil ft	megmhos/cm ³	6.015	rpm	degrees/sec	6
microhm/cm3 ohms/mil	ft	6.015	seconds (angle)	radian	4.848x10*
microhm/cm3	microhms/in3	0.3937	spheres (solid angle)	steradian	12.57
microhm/in3	microhm/cm3	2.54	spherical rt. angle	steradian	1.571
microinch	angstrom	254	spherical rt. angle	sphere	0.125
micromicron	angstrom	0.01	spherical rt. angle	hemisphere	0.25
micron	angstrom	10000	steradian	sphere	0.07958
mil	inch	36802	steradian	hemisphere	0.1592
mi	cm	0.0025	stere	liter	10 ³
milliliter	Cm ³	1	tons (short)	b	2000
millimeter	mi	39.37	tons (short)	kg	907.2
millimeter	micron	1000	tons (metric)	b	2205
millimeter	inch	0.03937	tons (metric)	kg	10 ³
millimeter	angstrom	107	tons (long)	b	2240
millimicron	angstrom	10	tons (long)	kg	1016
minute	seconds (angle)	60	watt	kilowatt	36802
minutes (angle)	radian	2.909x10 ⁻⁴	wat	ft-lb/sec	0.7376
mm²	in²	1.55x10 ⁻³	watt	ft-lb/min	44.25
mm²	Cm ²	0.01	wat	ergs/sec	10 ⁷
mm ² circular	mi	1.974x10 ³	wat	Btu/min	0.05692
nanometer	micron	10 ⁻³	watt-hour	kilogram-meter	367.1
ohms/mil ft	microhm/in3	0.06524	watt-hour	ft-lb	2655
ohms/mil ft	microhm/cm ³	0.1662	watt-hour	Btu	3.414
ounces (fluid)	liter	0.02957	weber	maxwell	10*
	-				

MATERIAL DEPOSITION

Key to Symbols: * influenced by composition; ** Cr-plated rod or strip; ***all metals alumina coated; C = carbon; Gr = graphite; Q = quartz; In cl = Inconel; VC = vitreous carbon; SS = stainless steel; Ex = excellent; G = good; F = fair; P = poor; S = sublimes; D = decomposes; RF = RF sputtering is effective; RF-R = reactive RF sputter is effective; DC = DC sputtering is effective; DC-R = reactive DC sputtering is effective

					Temp.	(°C) fo	r Given		Evaporation Techniques					
					Vap.	Press.	(Torr)			The	rmal Sou	rces		
Material	Symbol	MP (° C)	S/D	g/cm ³	10 ⁻⁸	10.6	104	E-Bear	n Boat	Coil	Basket	Crucible	Sputter	Comments
Aluminum	А	660	_	2.70	677	821	1,010	Ex	_	_	ωт	B ₂ -BN, ZrB ₂ , BN	DC	Alloys W/Ta/Mo. Flash evap or use BN crucible
Auminum Antimonide	AISb	1,080	_	4.3	-	-	_	-	_	-	_	_	RF	_
Auminum Arsenide	AAs	1,600	_	3.7	_	-	~ 1,300	_	_	_	_	_	RF	_
Aluminum Bromide	ABr ₃	97	_	2.64	_	_	~ 50	_	Mo	_	_	Gr	_	_
Aluminum Carbide	Al ₄ C ₃	~1,400	D	2.36	_	-	~ 800	F	_	-	_	_	RF	n 2.7
Aluminum, 2% Copper	AI2%Cu	640	_	2.82	_	-	_	_	_	_	_	_	DC	Wire feed & flash. Co-evap difficult
Auminum Fluoride	AF ₃	1,291	S	2.88	410	490	700	Ρ	Mo, W, Ta	-	_	Gr	RF	-
Aluminum Nitride	AIN	>2,200	S	3.26	_	-	~1,750	F	-	-	-	-	RF-R	Decomposes. R-evap Al in 10 ³ T N ₂
Aluminum Oxide	Ala Oa	2 072	_	3.97	_	_	1.550	Ex	w	_	w	_	RF-R	Forms smooth, hard films, n 1.66
Auminum Phosohide	AP	2.000	_	2.42	_	_	_	_	_	_	_	_	RF	_
Auminum 2% Silicon	Al2%Si	640	_	2.69	_	_	1.010	_	_	_	_	TiB2-BN	RE DC	Wire feed & flash. Co-evap difficult
Antimory	Sb	630	S	6.68	279	345	425	Р	Mott Tatt	Mo. Ta	Mo. Ta	BN.C.AbO3	RF. DC	Sublimes rapidly at low temp
Antimony Oxide	Sb ₂ O ₂	656	S	5.2	_	_	~300	G	Pt	_	Pt	BN, AlaQa	RF-R	Decomposes on W. n 2.09, 218, 2.35
Antimony Selenide	Sb ₂ Se ₂	611	_	_	_	_	_	_	Та	_	_	C 2-3	RF	Composition variable
Antimony Sulfide	SboSa	550	_	4.64	_	_	~200	G	Mo, Ta	_	Mo, Ta	Al ₂ O ₃	_	No decomposition, n 3.19, 4.06, 4.3
Antimony Telluride	Sb ₂ Te ₃	629	_	6.50	_	_	600	_	_	_	_	C	RF	Decomposes over 750° C
Arsenic	As	817	S	5.73	107	150	210	Ρ	С	-		Al ₂ O ₃ , BeO, VC	-	Dedicated vacuum system. Sublimes rapidly at low terms
Arsenic Oxide	AsoOo	312	_	3 74	_	_	_	_	_	_	_	_	_	_
Arsenic Selenide	AsoSeo	~360	_	4.75	_	_	_	_	_	_	_	AlaOa, Q	RF	_
Arsenic Sulfide	AsoSo	300	_	3.43	_	_	~400	F	Mo	_	_	A202. Q	RF	n 24, 281, 3.02
Arsenic Telluride	AsoTeo	362	_	_	_	_	_	_	_	_	_		_	Flash See JVST 1973: 10:748
Barium	Ba	725	_	3.51	545	627	735	F	W. Ta. Mo	w	w	Metais	RF	Wets without alloving reacts with geramics
Barium Chloride	BaClo	963	_	3.92	_	_	~650	_	Ta, Mo	_	_	_	RF	Preheat gently to outgas, n 1.73
Barium Fluoride	BaFo	1,355	S	4.89	_	_	~700	G	Mo	_	_	_	RF	n 1.47
Barium Oxide	BaO	1,918	_	5.72	_	_	~1,300	Р	Pt	_	Pt	Al ₂ O ₃	RF, RF-R	Decomposes slightly, n 1.98
Barium Sulfide	BaS	1,200	_	4.25	_	_	1,100	_	Mo	_	_	_	RF	n 2.16
Barium Titanate	BaTiO ₃	_	D	6.02	_	_	_	_	_	_	_	_	RF	Gives Ba. Co-evap OK. Sputter OK. n 240
Berylium	Be	1,278	_	1.85	710	878	1.000	Ex	W, Ta	W	W	BeO, C, VC	DC	Wets W/Ta/Mo. Evaporates easily
Berylium Carbide	Be ₂ C	>2,100	D	1.90	_	_	_	_	_	_	_	_	_	_
Berylium Chloride	BeCl ₂	405	_	1.90	_	_	~150	_	_	_	_	_	RF	_
Berylium Fluoride	BeF ₂	800	S	1.99	_	_	~200	G	_	_	_	_	_	n <1.33
Beryllium Oxide	BeO	2,530	_	3.01	_	_	1,900	G	_	_	W	_	RF, RF-R	No decomposition from E-beam. n 1.72
Bismuth	В	271	_	9.80	330	410	520	Ex	W, Mo, Ta	W	w	Al ₂ O ₃ , VC	DC	Resistivity high.
Bismuth Fluoride	BF ₃	727	S	5.32	_	_	~300	_	_	_	_	Gr	RF	n 1.74
Bismuth Oxide	B ₂ O ₃	860	_	8.55	_	_	~1,400	Ρ	Pt	_	Pt	_	RF, RF-R	n 1.91
Bismuth Selenide	Bl ₂ Se ₃	710	D	6.82	_	_	~650	G	_	_	_	Gr, Q	RF	Co-evap OK. Sputter OK
Pismuth Sulfide	BisSo	685	D	7.39	_	_	_	_	_	_	_	_	RE	n 134 146
Bismuth Telluide	BoTeo	573	-	77	_	_	~600	_	W Mo	_	_	Gr O	RE	Co-evap OK Sputter OK
Rismuth Titanate	BhThOr		D		_	_	_	_		_	_		RE	Souther OK B-coverage in 10°T On
Boron	B	2 079	-	2.34	1 278	1.548	1 797	Fx	с	_	_	C VC	RF	Forms carbide with container
Boron Carbide	BAC	2,350	_	2.52	2,500	2,580	2 650	Ex		_	_	_	RF	_
Boran Nitride	BN	~3.000	S	2.25	_	_	~1.600	P	_	_	_	_	RE RE-R	Decomposes, R-sputter preferred
Boron Oxide	BaOa	~450	-	1.81	_	_	~1.400	G	Pt Mo	_	_	_		n 1 48
Boron Sulfide	BaSa	310	_	1.55	_	_	800		-	_	_	Gr	RF	_
Cadmium	Cd	321	_	8.64	64	120	180	P	W Mo Ta	_	W Mo Ta	AlcOn O	REDC	Dedicated vacuum system High VP
								<u> </u>	.,,		,,		,20	Low sticking coeff
Cadmium Antimonide	Cd ₃ Sb ₂	456	-	6.92	-	-	-	-	-	-	-	_	-	_
Cadmium Arsenide	Cd ₃ As ₂	721	-	6.21	-	-	_	-	-	-	-	Q	RF	_
Cadmium Bromide	CdBr ₂	567	-	5.19	-	-	~300	-	-	-	-	-	_	-
Cadmium Chloride	CdCl ₂	568	-	4.05	-	-	~400	-	-	-	-	-	_	_
Cadmium Fluoride	CdF ₂	1,100	-	6.64	-	-	~500	-	_	-	-	-	RF	n 1.56
Cadmium lodide	Cd ₂	387	-	5.67	-	-	~250	-	-	-	-	-	_	-
Cadmium Oxide	CdO	>1,500	D	6.95	-	-	~530	-	-	-	-	-	RF-R	Decomposes. n 2.49
Cadmium Selenide	CdSe	>1,350	S	5.81	-	-	540	G	Mo, Ta	-	_	Al ₂ O ₃ , Q	RF	Evaporates easily n 2.4
Cadmium Sulfide	CdS	1,750	S	4.82	-	_	550	F	W, Mo, Ta	-	W	M203, Q	RF	Substrate temp. affects sticking coeff Composition varies in 2.51, 2.53
														Southeast 10,000 11 210 1, 2100

					Temp.	(°C) for	Given		Evapora	ation	Techniques			
					Vap.	Press. (Torr)			Th	ermal Sourc	:0S		
Material	Symbol	MP (°C)	S/D	g/cm ³	10-8	10-6	10-4	E-Bear	m Boat	Coil	Basket	Crucible	Sputter	Comments
Cadmium Telluide	CdTe	1,121	_	5.85	_	_	450	_	W, Mo, Ta	W	W, Ta, Mo	_	RF	Substrate temp. affects composition. n~2.6
Caldium	Ca	839	S	1.54	272	357	459	Р	W	W	W	AbO3, Q	_	Film reacts in air.
Calcium Fluoride	CaF ₂	1,423	_	3.18	_	_	~1,100	_	W, Mo, Ta	_	W, Mo, Ta	Q	RF F	Rate control important. Preheat gently to outgas.
	-													n 1.43
Calcium Oxide	CaO	2,614	_	~3.3	_	_	~1,700	_	W, Mo	_	_	ZrO ₂	RF-R	Forms valatile oxides with W/Mo.
														n 1.84
Calcium Silicate	CaSiO ₃	1,540	_	2.91	_	_	_	G	_	_	_	Q	RF	n 1.61, 1.66
Caldium Sulfide	CaS	_	D	2.5	-	-	1,100	-	Mo	-	_	_	RF	Decomposes. n 2.14
Calcium Titanate	CaTIO ₃	1,975	_	4.10	1,490	1,600	1,690	P	_	-	_	_	RF	Decomposes in evap. Sputter OK. n 2.34
Caldium Tungstate	CaWO ₄	-	-	6.06	-	-	_	G	W	-	_	_	RF	n 1.92
Carbon	С	~3,652	S	1.8-2.1	1,657	1,867	2,137	Ex	_	-	_	_	PDC	E-beam or Arc evap. Poor film achesion.
Cerlum	Ce	798	_	~6.70	970	1,150	1,380	G	W, Ta	W	W, Ta	Al ₂ O ₃ , BeO,	VC DC, RF	—
Certum Fluoride	CeF ₃	1,460	-	6.16	-	-	~900	G	W, Mo, Ta	-	Mo, Ta	_	RF	Preheat gently to outgas. n ~ 1.7
Cerlum (III) Oxide	Ce ₂ O ₃	1,692	-	6.86	-	-	-	F	W	-	-	-	-	Alloys. Use thick W boat. n 1.95
Cerlum (IV) Oxide	CeO ₂	~2,600	-	7.13	1,890	2,000	2,310	G	W	-	-	_	RF, RF-R	Little decomposition.
Cesium	Cs	28	-	1.88	-16	22	80	-	SS	-	_	Q	_	-
Cesium Bromide	CsBr	636	-	3.04	-	-	~400	-	W	-	_	_	RF	n 1.70
Cesium Chloride	CsCl	645	-	3.99	-	-	~500	-	W	-	_	_	RF	n 1.64
Cesum Fluoride	CSF	682	-	4.12	-	-	~500	_	w	-	-	-	RF	n 1.48
Cesum Hydroxide	CSUH	212	-	3.66	-	-	550	-	- M	-	-	~ ~	-	-
Cesum lodide	CSI	626	-	4.51	-	-	~500	-	w	-	-	PL,Q	RF DE	n 1.79
Chicide	Na5Al3F14	4 057	-	2.9	007	077	~800	_	M0, W		-		KF DC	n 1.33
Chromium Chromium Bosido		1,857	5	6.47	837	911	1,15/	G		W	w	vc	DC	Hims very adherent. High rates possible.
Chromium Bonde	CrBr-	2,700(?)	-	4.99	_	-	-	_		-	_	_	DE	_
Chomium Brombe	Cibi2	1 090	_	4.30	_	_	~2.000	-	w	_	_	_	DE	_
Chromium Chloride	000	824	_	2.88	_	_	-2,000		Fe Ind	-			RE	
Chromium Oxide	OreCo	2 266	_	5.21		_	~2 000	G	W Mo	_	w		RE RE.R	Loses On reovidizes at 600° C in air
Chioman Cabe	0203	2,200		0.21			2,000	0	**, 100	_		_	N, N-N	n 2.55
Chromium Silicide	CrSi ₂	1,490	_	5.5	_	_	_	_	_	_	_	_	RF	
Chromium-Silicon	-													
Monoxide	Cr-SIO	_	S	•	•	•	•	G	w	_	W	_	RF	Flash evap
Cobalt*	Co	1,495	_	8.9	850	990	1,200	Ex	W, Nb	-	W	Al ₂ O ₃ , BeC) DC	Alloys with W/Ta/Mo
Cobalt Bromide	CoBr ₂	678	D	4.91	-	-	400	-	Ind	-	-	-	RF	_
Cobalt Chloride	CoCl2	724	D	3.36	-	-	472	-	Ind	-	-	-	RF	_
Cobalt Oxide	CoO	1,795	-	6.45	-	-	_	-	_	-	-	-	DC-R, RF-F	R Sputter preferred.
Copper	Cu	1,083	-	8.92	727	857	1,017	Ex	Мо	W	w	Al ₂ O3, Mo, 1	fa DC	Adhesion poor. Use interlayer (Cr).
														Evap OK.
Copper Chloride	CuCl	430	-	4.14	-	-	~600	-	-	-	-	-	RF	n 1.93
Copper Oxide	Cu ₂ O	1,235	S	6.0	-	-	~600	G	Та	-	-	Al ₂ O ₃	DC-R, RF-R	n 2.71
Copper Sulfide	Cu ₂ S	1,100	-	5.6	_	_	_	_	-	-		_	-	_
Crydite	Na3AIF6	1,000	_	2.9	1,020	1,260	1,480	Ex	W, Mo, Ta	_	W, Mo, Ta	VC	RF	Large chunks reduce spitting
				0.55	00.5	750		_	-					Little decomposition
Dysprosium	Dy	1,412	_	8.55	625	750	900	G	Ta	-	-	-	DC	
Dysprosium Fluonae	Dyr ₃	1,360	8	-	-	-	~800	G	la	-	-	-	KH-	-
Dysprosium Oxide	Dy203	2,340	_	1.81	-	775	~1,400	_	Ir W.To	-	_	-	KF, KF-K	Loses U2.
Eroum Erbium Buoddo	Er ExC.	1,529	5	9.07	000	115	300	G	w, ia	-	_	-	DC	
Edulin Fuolide	Er-O	1,300	_	8.64	_	_	~1.600	_	MU	_	_	_	DE DE D	Jose JV31. 1903; A0(0):2320.
Europium	E1203	822	-	5.04	280	360	480	-	W To	_		MaOa	00	
Europium Europide	EuEo	1,380	0	6.50	200	300	~050	r	W, Id	_	_	M203	RE	
Furmium Ovide	Euro	.,300	_	7.40	_	_	~1.600	G	Ir Ta W	_		ThO	RF RF-R	Loses On Films dear and hard
Europium Sulfide	EuS	_	_	5.75	_	_	-	G		_	_	_	RF	_

					Temp. (° C) for	Given	Evaporation Techniques				;		
					Vap. F	Press. (1	iorr)			The	rmal Sour	Ces		
Material	Symbol	MP (° C)	S/D	g/cm³	10'8	10*	10-4	E-Beam	Boat	Coil	Basket	Crucible	Sputter	Comments
Gadolinium®	Gd	1,313	_	7.90	760	900	1,175	Ex	Та	_	_	Al203	DC	High Ta solubility
Gadolinium Carbide	GdC ₂	_	_	_	-	_	1,500	_	_	_	_	C	RF	Decomposes under sputtering
Gadolinium Oxide	Gd ₂ O ₃	2,330	_	7.41	-	-	_	F	lr	-	_	_	RF, RF-R	Loses O ₂ .
Gallium	Ga	30	_	5.90	619	742	907	G	_	_	_	Al ₂ O ₃ , BeO, C	- 1	Alloys with W/Ta/Mo. E-beam OK.
Gallium Antimonide	GaSb	710	_	5.6	_	_	_	F	W, Ta	_	_	_	RF	Flash evap
Gallium Arsenide	GaAs	1,238	_	5.3	_	_	_	G	W, Ta	_	_	С	RF	Flash evap
Gallium Nitride	GaN	800	S	6.1	_	_	~200	_	_	_	_	Al ₂ O ₃	RF, RF-R	Revap Ga in 10 ^a T N ₂
Gallium Oxide	Ga ₂ O ₃	1,900	-	6.44	-	-	_	-	Pr, W	-	_	_	RF	Loses O2. n 1.92
Gallium Phosphide	GaP	1,540	_	4.1	_	770	920	_	W, Ta	_	W	Q	RF	No decomposition. Rate control important.
Germanium	Ge	937	_	5.35	812	957	1,167	Ex	W, C, Ta	—	_	Q, Al ₂ O ₃	DC	E-beam film excellent
Germanium Nitride	Ge ₃ N ₂	450	S	5.2	_	_	~650	_	_	_	_	_	RF-R	Sputter preferred
Germanium (II) Oxide	GeO	710	S	_	_	_	500	_	_	_	_	Q	RF	n 1.61
Germanium (III) Oxide	e GeO ₂	1,086	_	6.24	_	_	~625	G	Ta, Mo	_	W, Mo	Q, Al ₂ O ₃	RF-R	Loses O ₂ ; Film mostly GeO
Germanium Telluride	GeTe	725	_	6.20	_	_	381	_	W, Mo	_	W	Q, Al ₂ O ₃	RF	•
Glass, Schotf® 8329	_	_	_	2.20	_	_	_	Ex	_	_	_	_	RF	Melt in air before evaporating.
Gold	Au	1,064	_	19.32	807	947	1,132	Ex	W***Mo***	w-	— A	1203, BN. VC.	W DC	Films soft Adhesion poor.
							,					2.5		Use Cr interfaver
Hafnium	Hf	2 227	_	13.31	2.160	2 2 50	3.090	G	_	_	_	_	DC	_
Hafnium Boride	HfBo	3,250	_	10.5		_	_	_	_	_	_	_	DC. RF	_
Hafnium Carbide	HIC	~3.890	S	12.20	_	_	~2.600	_	_	_	_	_	RE	_
Hafnium Nitride	HN	3 305	Ľ		_	_	2,000	_	_	_	_	_	RERER	_
Hafnium Oxide	HO	2 758		9.68			~2.500	F	w				RERER	Loses Oo Film HIO
Hafnium Slinida	HRID	1 750		7.0			2,000						DE	2000 02 111110
Holmium	Ho	1,730	_	8.80	650	770	950	6	W Ta	w	w		14	
Holmium Eluoride	HoEe	1 143	-	0.00			~900	_	•••, ia			0	DC RE	
Holmium Oxide	Ho-O-	2 370	_	8.41	_	_	-000		-			<u> </u>	RE RE.R	
Incorrel	NHC/Eo	1 405		0.41		_		-		W	W		00	Eine wite unterpred on W
noner	NICHTO	1,420	_	0.0	_	_	_	0				_	00	Low rate for smooth films
Indium	In	157	_	7.30	487	597	742	Ex	W, Mo	_	W	Gr, Al ₂ O ₃	DC	Wets W and Cu. Mo liner OK.
Indium Antimonide	InSb	535	_	5.8	_	_	_	_	W	_	_	_	RF	Decomposes. Sputter preferred; Co-evap OK.
Indium Arsenide	InAs	943	_	5.7	780	870	970	_	w	_	_	_	RF	_
Indium Nitride	InN	1,200	_	7.0	_	_	_	_	_	_	_	_	_	_
Indium (I) Oxide	In ₂ O	~600	S	6.99	_	_	650	_	_	_	_	_	RF	Decomposes under sputtering
Indium (III) Oxide	InoOa	850	_	7.18	_	_	~1,200	G	W. Pt	_	_	Al ₂ O ₂	_	_
Indium Phosohide	InP	1.070	_	4.8	_	630	730	_	W. Ta	_	W. Ta	Gr	RF	Films are P rich
Indium Selenide	In ₂ Se ₂	890	_	5.67	_	_	_	_	_	_	_	_	RF	Sputter preferred; Co-evap OK. Flash evap
Indium (I) Sulfide	In ₂ S	653	_	5.87	_	_	650	_	_	_	_	Gr	RF	_
Indium (II) Sulfide	InS	692	S	5.18	_	_	650	_	_	_	_	Gr	RF	_
Indium (III) Sulfide	InoSo	1.050	S	4.90	_	_	850	_	_	_	_	Gr	RF	Decomposes, Film In ₂ S
Indium (II) Telluride	InTe	696	_	6.29	_	_	_	_	_	_	_	_	_	
Indium (III) Telluride	InoTeo	667	_	5.78	_	_	_	_	_	_	_	_	RF DC-R	Soutier preferred: Colevap OK, Flash evap
Indium Tin Oxide	InoOa-SnOa	1.800	S	_	_	_	_	_	_	_	_	_	-	_
Indum	1.203 0.02	2 4 10	_	22 42	1 850	2 080	2 380	F	_	_	_	ThOp	DC	_
ron®	Fe	1.535	_	7.86	858	998	1,180	- Ex	w	W	w	AbOa BeO	DC	Attacks W Films hard smooth Preheat
		.,			~~~	~~~	.,	5				203, 500		gently to outgas.
Iron Bromide	FeBr ₂	684	D	4.64	_	_	561	_	_	_	_	Fe	RF	
Iron Chloride	FeCl ₂	670	S	3.16	_	_	300	_	_	_	_	Fe	RF	n 1.57
Iron lodide	Felo	_	_	5.32	_	_	400	_	_	_	_	Fe	RF	-
Iron (II) Oxide	FeO	1,369	_	5.7	_	_	_	Р	_	_	_	_	RF, RF-R	Decomposes; sputter preferred. n 2.32
Iron (III) Oxide	Fe ₂ O ₂	1,565	_	5.24	_	_	_	G	w	_	W	_	_	Decomposes to Fe ₃ O ₄ at 1,530° C. n 3.01
Iron Sulfide	FeS	1 193	D	474	_	_	_	_	_	_	_	Al _o O _o	RF	Decomposes

					Temp. (° C) for Given Evaporation Techniques									
					Vap.	Press. (1	forr)			The	rmal Source	205		
Material	Symbol	MP (° C)	S/D	g/cm ³	10 ⁻⁸	10 ⁻⁶	10-4	E-Bean	n Boat	Coil	Basket	Crucible	Sputter	Comments
Kanthal	FeC:Al	_	_	7.1	_	_	_	_	W	W	W	_	DC	_
Lanthanum	La	921	_	6.15	990	1,212	1,388	Ex	W, Ta	_	_	Al ₂ O ₃	RF	Films react in air
Lanthanum Boride	LaB ₆	2,210	D	2.61	_	_	_	G	-	_	_	_	RF	_
Lanthanum Bromide	LaBr ₃	783	_	5.06	_	_	_	_	_	_	Та	_	RF	Films hygroscopic. n 1.94
Lanthanum Fluoride	LaF ₃	1,490	S	~6.0	_	_	900	G	Ta, Mo	_	Та	_	RF	No decomposition. n ~1.6
Lanthanum Oxide	La203	2,307	_	6.51	_	_	1,400	G	W, Ta	_	_	_	RF	Loses O2. n~1.73
Lead	Pb	328	_	11.34	342	427	497	Ex	W, Mo	W	W, Ta	Al ₂ O ₃ , Q	DC	_
Lead Bromide	PbBr ₂	373	_	6.66	_	_	~300	_	_	_	_	_	_	_
Lead Chloride	PbCl2	501	_	5.85	_	_	~325	_	Pt	_	_	Al ₂ O ₃	RF	Little decomposition
Lead Fluoride	PbF ₂	855	S	8.24	_	_	~400	_	W, Pt, Mo) —	_	BeO	RF	n 1.75
Lead lodide	Pbl ₂	402	_	6.16	_	_	~500	_	Pt	_	_	Q	_	_
Lead Oxide	PbO	886	_	9.53	_	_	~550	_	Pt	_	_	Q, Al ₂ O ₃	RF-R	No decomposition. n ~2.6
Lead Selenide	PbSe	1,065	S	8.10	_	_	~500	_	W, Mo	_	W	Gr, Al ₂ O ₃	RF	_
Lead Stannate	PbSnO ₃	1,115	_	8.1	670	780	905	P	Pt	_	Pt	Al ₂ O ₃	RF	Decomposes
Lead Sulfide	PbS	1,114	S	7.5	_	_	500	_	W	_	W, Mo	Q, Al ₂ O ₃	RF	Little decomposition. n 3.92
Lead Telluride	PbTe	917	_	8.16	780	910	1,050	_	Mo, Pt, Ta	- 1	_	Al ₂ O ₃ , Gr	RF	Film is Te rich. Sputter preferred;
														Co-evap OK.
Lead Titanate	PbTiO ₃	_	_	7.52	_	_	_	_	Та	_	_	_	RF	_
Lithium	Li	181	_	0.53	227	307	407	G	Ta, SS	_	_	Al ₂ O ₃ , BeO	_	Film reacts in air
Lithium Bramide	LiBr	550	-	3.46	-	_	~500	_	Ni	-	_	_	RF	n 1.78
Lithium Chloride	LICI	605	-	2.07	-	_	400	_	N	-	_	-	RF	Preheat gently to outgas. n 1.66
Lithium Fluoride	LF	845	_	2.64	875	1,020	1,180	G	Ni, Ta, Mo,	W—	_	Al ₂ O ₃	RF	Optical films require rate control.
														Preheat gently to outgas. n 1.39
Lithium lodide	Lil	449	-	4.08	-	_	400	_	Mo, W	-	_	-	RF	n 1.96
Lithium Oxide	LL ₂ O	>1,700	-	2.01	-	_	850	_	Pt, Ir	-	-	-	RF	n 1.64
Lutetium	Lu	1,663	-	9.84	-	-	1,300	Ex	Та	-	-	Al ₂ O ₃	RF, DC	-
Lutetium Oxide	Lu ₂ O ₃	-	-	9.42	-	-	1,400	-	lr -	-	-	-	RF	Decomposes
Magnesium	Mg	649	s	1.74	185	247	327	G	W, Mo, Ta,	CBW	w	Al ₂ O ₃ , VC	DC	Extremely high rates possible
Magnesium Aluminate	MgAl ₂ O ₄	2,135	_	3.6	_	_	_	G	_	_	_		RF	(Natural spinel) n 1.72
Magnesium Bromide	MgBr ₂	700	_	3.72	_	_	~450	_	Ni	_	_	_	RF	Decomposes
Magnesium Chloride	MgCl ₂	714	_	2.32	_	_	400	_	Ni	_	_	_	RF	Decomposes. n 1.67
Magnesium Fluoride	MgF ₂	1,261	_	2.9-3.2	_	_	1,000	Ex	Mo, Ta	_	_	Al ₂ O ₃	RF	Substrate temp and rate control important.
-														Reacts with W. Mo OK. n 1.38
Magnesium lodide	Mgl ₂	<637	D	4.43	_	_	200	_	Ir	_	_	_	RF	_
Magnesium Oxide	MgO	2,852	_	3.58	_	_	1,300	G	_	_	_	C, Al ₂ O ₃	RF, RF-R	R-Evap in 10 ³ T O ₂ .
												- •		W gives volatile oxides. n~1.7

					Temp. (° C) for	Given		Evapora	ation 1	Technique	\$		
					Vap. I	Press. (1	Torr)			The	armal Sour	ces		
Material	Symbol	MP (° C)	S/D	g/cm ³	10 ⁻⁸	10-6	10-4	E-Beam	Boat	Coil	Basket	Crucible	Sputter	Comments
Manganese	Mn	1,244	S	7.20	507	572	647	G	W, Ta, Mo	W	W	Al ₂ O ₃ , BeO	DC	_
Manganese Bromide	MnBr ₂	_	D	4.39	_	_	500	_	Incl	_	_	_	RF	_
Manganese Chloride	MnCl ₂	650	_	2.98	-	-	450	_	Incl	_	_	-	RF	_
Manganese (III) Oxide	Mn ₂ O ₃	1,080	_	4.50	_	_	_	_	_	_	_	_	_	_
Manganese (IV) Oxide	MnO ₂	535	_	5.03	-	-	_	Р	W	_	W	-	RF-R	Loses O ₂ at 535° C
Manganese Sulfide	MnS	_	D	3.99	-	_	1,300	_	Mo	_	_	_	RF	Decomposes. n 2.70
Mercury	Hg	-39		13.55	-68	-42	-6	_	_	_	_	_	_	_
Mercury Sulfide	HgS	584	S	8.10	_	_	250	_	_	_	_	Al ₂ O ₃	RF	Decomposes. n 2.85, 3.20
Molybdenum	Mo	2,617	_	10.2	1,592	1,822	2,117	Ex	_	_	_	_	DC	Films smooth, hard. Preheat gently to outgas.
Molybdenum Boride	MoB ₂	2,100	_	7.12	_	_	_	Р	_	_	_	_	RF	_
Molybdenum Carbide	Mo ₂ C	2,687	_	8.9	-	-	_	F	_	_	_	-	RF	Evaporation of Mo(CO) ₆ yields Mo ₂ C.
Molybdenum Disulfide	MoS ₂	1,185	_	4.80	_	_	~50	_	_	_	_	_	RF	_
Molybdenum Oxide	MoO ₃	795	S	4.69	_	_	~900	_	Mo, Pt	_	Mo	Al ₂ O ₃ , BN	RF	Slight O ₂ loss. n 1.9
Molybdenum Silicide	MoS ₂	2,050	_	6.31	_	_	_	_	W	_	_	_	RF	Decomposes
Neodymium	Nd	1,021	_	7.01	731	871	1,062	Ex	Та	_	_	Al ₂ O ₃	DC	Low W solubility
Neodymium Fluoride	NdF ₃	1,410	_	6.5	_	_	~900	G	Mo, W	_	Mo, Ta	Al203	RF	Little decomposition. n 1.6
Neodymium Oxide	Nd ₂ O ₃	~1,900	_	7.24	_	_	~1,400	G	Ta, W	_	_	ThO ₂	RF, RF-R	Loses O ₂ , films dear. E-beam OK. n 1.79
Nichrome IV ^e	N/Cr	1,395	_	8.50	847	987	1,217	Ex	***	W	W, Ta A	1,03, VC, BeO	DC	Alloys with W/Ta/Mo
Nickel®	Ni	1,453	_	8.90	927	1,072	1,262	Ex	W	W	W A	VpO3, BeO, VC	DC	Alloys with W/Ta/Mo. Smooth adherent films
Nickel Bromide	NBr ₂	963	S	5.10	_	_	362	_	Incl	_	_	_	RF	_
Nickel Chibride	NCl ₂	1,001	S	3.55	-	_	444	_	Incl	_	_	_	RF	_
Nickel Oxide	NIO	1,984	_	6.67	_	_	~1,470	_	_	_	_	Al ₂ O ₃	RF-R	Decomposes on heating, n 2.18
Nimendium®	Ni3%Mn	1,425	_	8.8	_	_	_	_	_	_	_	_	DC	
Niobium	Nb	2,468	_	8.57	1,728	1,977	2,287	Ex	W	_	_	_	DC	Attacks W. n 1.80
Niobium Baride	NbB ₂	2,900	_	6.97	_	_	_	_	_	_	_	_	RF	_
Niobium Carbide	NbC	3,500	_	7.6	_	_	_	F	_	_	_	_	RF	_
Niobium Nitride	NbN	2,573	_	8.4	_	_	_	_	_	_	_	_	RF, RF-R	R-evap Nb in 10 ³ T N ₂
Niobium (II) Oxide	NbO	_	_	7.30	_	_	1,100	_	Pt	_	_	_	RF	_
Niobium (III) Oxide	Nb ₂ O ₃	1,780	_	7.5	_	_	_	_	W	_	w	_	RF, RF-R	_
Niobium (V) Oxide	Nb ₂ O ₅	1,485	_	4.47	_	_	_	_	W	_	W	_	RF, RF-R	n 1.95
Niobium Telluride	NbTeX	_	_	7.6	_	_	_	_	_	_	_	_	RF	Composition variable
Niobium-Tin	Nb ₃ Sn	_	_	_	_	_	_	Ex	_	_	_	_	DC	Co-evap OK
Osmium	Ős	3,045	_	22.48	2,170	2,430	2,760	F	_	_	_	_	DC	_
Osmium Oxide	0s02	_	D	_	_	_	_	_	_	_	_	_	_	_
Palladium	Pd	1,554	S	12.02	842	992	1,192	Ex	W	W	W	Al ₂ O ₃ , BeO	DC	Alloys W/Ta/Mo. Rapid evap suggested.
Palladium Oxide	PdO	870	_	9.70	-	-	575	_	_	_	_	A203	RF-R	Decomposes
Parylene	C ₈ H ₈	300-400	_	1.1	_	_	_	_	_	_	_	_	_	(Vapor-depositable plastic)
Permaloy	Ni/Fe	1,395	_	8.7	947	1,047	1,307	G	W	_	_	Al2O3, VC	DC	Film low in Ni
Phosphorus	Р	44.1	_	1.82	327	361	402	_	_	_	_	Al ₂ O ₃	_	Film ignites in air. n 2.14
Phosphorus Nitride	P ₃ N ₅	_	_	2.51	_	_	_	_	_	_	_	-	RF, RF-R	_
Platinum	Pt	1,772	_	21.45	1,292	1,492	1,747	Ex	W	W	W	C, ThO ₂	DC	Alloys W/Ta/Mo. Films soft, poor adhesion.

					Temp. (°C) for	Given		Evapor	ation Te	ichn iques	5		
		Vap. Press. (Torr) Thermal Sources		Ces										
Material	Symbol	MP (° C)	S/D	g/cm ³	10 ⁻⁸	10 ⁻⁶	10-4	E-Beam	Boat	Coil	Basket	Crucible	Sputter	Comments
Platinum Oxide	P102	450	-	10.2	-	-	-	-	-	-	-	-	RF-R	_
Plutonium	Pu	641	_	19.84	_	_	_	_	W	_	_	_	_	_
Polonium	Po	254	_	9.4	117	170	244	_	_	_	_	Q	_	_
Potassium	K	63	_	0.86	23	60	125	_	Mo	_	_	Q	_	Film reacts in air. Preheat gently to outgas.
Potassium Bromide	KBr	734	_	2.75	_	_	~450	_	Ta, Mo	_	_	Q	RF	Preheat gently to outgas. n 1.559
Potassium Chloride	KCI	770	S	1.98	_	_	510	G	Ta, Ni	_	_	_	RF	Preheat gently to outgas. n 1.49
Potassium Fluoride	KF	858	_	2.48	_	_	~500	_	_	_	_	Q	RF	Preheat gently to outgas. n 1.363
Potassium Hydroxide	KOH	360	_	2.04	_	_	~400	_	Pt	_	_	_	_	Preheat gently to outgas
Potassium Iodide	ю	681	_	3.13	_	_	~500	_	Та	_	_	_	RF	Preheat gently to outgas. n 1.677
Praseodymium	Pr	931	_	6.77	800	950	1,150	G	Та	_	_	_	DC	_
Praseodymium Oxide	Pr ₂ O ₃	_	D	7.07	_	_	1,400	G	lr -	_	_	ThO ₂	RF, RF-R	Loses O ₂
Radium	Ra	700	_	5 (?)	246	320	416	_	_	_	_	_	-	_
Rhenium	Re	3,180	_	20.53	1,928	2,207	2,571	Р	_	_	_	_	DC	_
Rhenium Oxide	ReO ₃	_	D	~7	_	_	_	_	_	_	_	_	RF	R-evap in 10 ³ T O ₂
Rhodium	Rh	1,966	_	12.4	1,277	1,472	1,707	G	W	W	W	ThO ₂ , VC	DC	E-beam OK
Rubidium	Rb	39	_	1.48	-3	37	111	_	_	_	_	ā	_	_
Rubidium Chloride	RbCI	718	_	2.09	_	_	~550	_	_	_	_	Q	RF	n 1.493
Rubidium lodide	Rbl	647	_	3.55	_	_	~400	_	_	_	_	Q	RF	n 1.647
Ruthenium	Ru	2,310	_	12.3	1,780	1,990	2,260	P	W	_	_	_	DC	_
Samarium	Sm	1,074	_	7.52	373	460	573	G	Та	_	_	AbO3	DC	_
Samarium Oxide	Sm ₂ O ₃	2,350	_	8.35	_	_	_	G	r	_	_	ThO ₂	RF, RF-R	Loses O2. Films smooth, dear.
Samarium Sulfide	Sm ₂ S ₃	1,900	_	5.73	_	_	_	G	_	_	_	-	-	_
Scandium	Sc	1,541	_	2.99	714	837	1,002	Ex	W	-	_	Al ₂ O ₃ , BeO	RF	Alloys with Ta.
Scandium Oxide	Sc2O3	2,300	_	3.86	_	_	~400	F	_	_	_	_	RF, RF-R	_
Selenium	Se	217	_	4.81	89	125	170	G	W, Mo	W, Mo	W, Mo	A203, VC	_	Dedicated vacuum system. High V.P.
Silcon	Si	1,410	_	2.32	992	1,147	1,337	F	W, Ta	_	_	BeO, Ta, VC	DC, RF	Alloys with W; use thick boat. E-beam OK
Silicon Boride	SB ₆	_	_	_	_	_	_	Р	_	_	_	_	RF	_
Silcon Carbide	SIC	~2,700	S, D	3.22	_	_	1,000	_	_	_	_	_	RF	Sputter preferred. n 2.654, 2.697
Silcon Nitide	Si ₃ N ₄	1,900	_	3.44	_	_	~800	_	_	_	_	_	RF, RF-R	_
Silicon (II) Oxide	so	>1,702	S	2.13	_	_	850	F	Ta	W	W	Ta	RF, RF-R	Use baffle box and low evap rate. n 1.6
Silicon (IV) Oxide	SIO2	1,610	_	~2.65	*	*	1,025*	Ex	_	_	_	Al ₂ O ₃	RF	Quartz excellent in E-beam. n 1.544, 1.553
Silicon Selenide	SISe	_	_	_	_	_	550	_	_	_	_	Q	RF	_
Silicon Sulfide	SIS	940	S	1.85	_	_	450	_	_	_	_	Q	RF	n 1.853

					Temp.	(°C) for	r Given	Evaporation Techniques						
					Vap.	Press. ((Torr)			The	armal Sour	Ces	1	
Material	Symbol	MP (° C)	S/D	g/cm ³	10 ⁻⁸	10 ⁻⁶	10-4	E-Bear	n Boat	Coil	Basket	Crucible	Sputter	Comments
Silcon Teluide	SiTe ₂	_	-	4.39	-	-	550	_	_	-	-	Q	RF	-
Silver	Ag	962	_	10.5	580	690	820	Ex	W	Мо	Ta, Mo	Al ₂ O ₃ , W	DC	Adhesion poor. Use Cr interfayer
Silver Bromide	AgBr	432	D	6.47	-	-	~380	-	Ta	-	-	Q	RF	n 2.253
Silver Chloride	AgCI	455	_	5.56	_	-	~520	-	Mo, Pt	-	Mo	Q	RF	n 2.07
Silver lodide	Agl	558	-	6.01	_	_	~500	-	Та	-	_	_	RF	n 2.21
Sodium	Na	98	_	0.97	74	124	192	_	Ta, SS	-	_	Q	_	Preheat gently to outgas. Film reacts in air.
Contra Densite	11-0-	747		0.00			40.0					<u> </u>	05	n 4.22
Sodium Biornice	Nabr	901	_	217	_	_	~400	-	Ta W Mo	-	_		PE	Corner over: little decomposition
Sodull Chorde	THOLE I		_	211	_	_	550	0	1d, ¥¥, MU	_	_	<u> </u>	N.	Preheat gently to outgas in 1 544
Sodium Cvanide	NaCN	564	_	_	_	_	~550	_	Aq	_	_	_	RF	Preheat gently to outgas, n 1,452
Sodium Fluoride	NaF	993	_	2.56	_	_	~1,000	G	Mo, Ta, W	_	_	BeO	RF	Preheat gently to outgas. No decomposition.
														n 1.336
Sodium Hydraxide	NaOH	318	_	2.13	-	-	~470	-	Pt	-	_	-	_	Preheat gently to outgas. n 1.358
Spinel	MgAl ₂ O ₄	-	-	8.0	-	-	_	G	-	-	-	-	RF	n 1.72
Strontium	Sr	769	_	2.6	239	309	403	Р	W, Ta, Mo	W	W	VC	RF	Wets but no alloy with W/Ta/Mo.
		075		0.05										Film reacts in air.
Strontium Chloride	SrCl ₂	8/5	-	3.05	-	-	-	-	-	-	_	-	-	n 1.650
Strantum Fluchoe	Sr0	2,430	-	4.24	_	_	~1,000	_	-	-		Al-03	DE	Depende with WMAs of 1,810
Strontium Sulfde	310	>2,430	_	370	_	_	1,300	_	Mo	-			RF	Decomposes n 2 107
Sulfur	s	113	_	207	13	19	57	Р	W	_	w	0	_	Dedicated vacuum system High VP n 1 957
Supermallov ^e	Ni/Fe/Mo	1,410	_	8.9	_	_	_	G		_	-	_	DC	Soutter preferred: Co-evap N/Fe and Mo
Tantalum	Та	2,996	_	16.6	1,960	2,240	2,590	Ex	_	_	_	_	DC	Forms good films
Tantalum Boride	TaB ₂	3,000(?)	_	11.15	_	_	_	_	_	_	_	_	RF	_
Tantalum Carbide	TaC	3,880	_	13.9	_	_	~2,500	-	_	_	_	_	RF	_
Tantalum Nitride	TaN	3,360	_	16.30	_	_	_	_	_	_	_	_	RF, RF-R	Evap Ta in 10 ^a T N ₂
Tantalum Pentoxide	Ta ₂ O ₅	1,872	-	8.2	1,550	1,780	1,920	G	Та	W	W	VC	RF, RF-R	Slight decomposition. Evap Ta in 103 T O2
														n 2.6
Tantalum Sulfide	TaS ₂	>1,300	-	-	-	-	-	-	-	-	_	-	RF	_
Tellor®	DTEE	2,200	_	20	1,570	1,800	2,090	-		-	_	_	DE	
Tellurium	Te	449	-	625	157	207	277		W Ta	w	W Ta	Alc0a 0	RE	Wels W/Ta without alloving of 002
Terbium	Tb	1.356	_	823	800	950	1.150	Ex	Ta	-	-	AbOa	RF	
Terbium Fluoride	TbF ₃	1,172	_	_	_	_	~800	_	_	_	_	-	RF	_
Terbium Oxide	Ть203	2,387	_	7.87	_	_	1,300	_	lr -	_	_	_	RF	Partially decomposes
Terbium Peroxide	Tb ₄ O ₇	-	D	_	_	_	_	_	Та	-	_	_	RF	Loses O2. Films are mostly TbO
Thalium	TI	304	-	11.85	280	360	470	Р	W, Ta	-	W	Al ₂ O3, Q	DC	Wets freely
Thallium Bromide	TIBr	480	S	7.56	-	-	~250	-	Ta	-	-	Q	RF	n 24 - 28
Thallium Chloride	TICI	430	S	7.00	-	-	~150	-	Та	-	_	Q	RF	n 2.247
Thalium locide	TLO	440	5	10.10	_	_	~250	-	-	-	_	ų	RF DE	n 2.78 Decomposes at 850° C to TL O
Thorium	Th	1750	-	11.19	1430	1 660	1.925	Fx	W Ta Mo	w			_	
Thorium Bromide	ThBra	610	S	5.67		_		_	Mo	-		_	_	n 2.47
Thorium Carbide	ThC ₂	2,655	_	8.96	_	_	~2,300	_	_	_	_	С	RF	_
Thorium Fluoride	ThF ₄	>900	_	6.32	_	_	~750	F	Мо	_	W	VC	RF	_
Thorium Oxide	ThO ₂	3,220	_	9.86	_	_	~2,100	G	W	-	_	_	RF, RF-R	_
Thorium Oxyllucride	ThOF ₂	900	-	9.1	-	-	_	-	Mo, Ta	-	_	-	_	n 1.52
Thorium Sulide	ThS ₂	1,925	_	7.30	_	_	_	_	_	-	-	_	RF	Sputter preferred; Co-evap OK
Thulum	Tm	1,545	s	9.32	461	554	680	G	Ta	-	-	Al ₂ O ₃	DC	-
Thuium Oxide	Im2O3		-	8.90		907	1,500	-	r	-	-		RF DC	Decomposes
	ai	202	_	1.20	002	007	331	D.	WU			A203	00	Taliner for E-beam
Tin Oxide	SnOo	1.630	S	695	_	_	~1.000	Fx	w	w	w	Q AlaOa	RF RF-R	Using W films law in O Oxidize in air n 2.0
Tin Selenide	SnSe	861	-	6.18	_	_	~400	G	-	_	_	Q	RF	_
Tin Sulfide	SnS	882	_	5.22	_	_	~450	_	_	_	_	Q	RF	_
Tin Teluide	SnTe	780	D	6.48	_	_	~450	_	_	_	_	Q	RF	_
Titanium	Т	1,660	_	4.5	1,067	1,235	1,453	Ex	W	_	_	TIC	DC	Alloys with W/Ta/Mo;
	-													Outgas is high on first heating
Titanium Boride	TIB ₂	2,900	-	4.50	-	-	-	Р	-	-	-	-	RF	_
Titanium Carbide	TIC	3,140	_	4.93	_	_	~2,300	_	_	_	_	_	RF	_
Titanium Nitride	TiN	2,930	_	5.22	_	_	_	G	Мо	_	_	_	RF, RF-RSp	utter preferred. Decomposes with thermal evap.
Titanium (II) Oxide	TIO	1,750	_	4.93	_	_	~1,500	G	W, Mo	_	_	VC	RF	Preheat gently to outgas. n 2.2
Titanium (III) Oxide	TI ₂ O ₃	2,130	D	4.6	-	_	-	G	W	-	_	_	RF	Decomposes
Titanium (IV) Oxide	TO ₂	1,830	-	4.26	-	-	~1,300	F	W, Mo	-	W	_	RF, RF-R	Loses O2. Oxides in air.
-		0.000		10.00	0.07	0.477	0.000							Ta gives films TiO/TL n 2.616, 2.903
rungsten	W	3.410	_	19.35	2.117	Z.407	Z 151	G	_	_	_	_	DC	Hims hard and adherent.

Matrial Openal With Press. (Corr.) Thermal Sources Spatter Comments Triggels Oxide WB < 2400 0 17.5 1.40 17.2 2.20 Ex P - - - RF - - - RF - - - RF - - - - - - - RF - - - - RF Rotaria Rotaria<						Temp. (° C) for Given				Evaporation Techniques					
Nature Symbol WPC 0 SUD Gen Dist Col Bast Bast Bast						Vap.	Press. (Torr)			Ther	mal Sourc	:05		
Turgeton Catché WB 2.200	Material	Symbol	MP (° C)	S/D	g/cm ³	10 ⁻⁸	10 ⁻⁶	10-4	E-Beam	Boat	Coil	Basket	Crucible	Sputter	Comments
Turgen Daubia WyD 2880 - 115 1480 17.5 - RF - - - RF RF Relation Mile	Tungsten Boride	WB ₂	~2,900	_	10.77	_	_	_	Р	_	_	_	_	RF	_
Ungain Diadio Wb2 1 25 7.5 $ -$ <th< td=""><td>Tungsten Carbide</td><td>W₂C</td><td>2,860</td><td>_</td><td>17.15</td><td>1,480</td><td>1,720</td><td>2,120</td><td>Ex</td><td>С</td><td>_</td><td>_</td><td>_</td><td>RF</td><td>_</td></th<>	Tungsten Carbide	W ₂ C	2,860	_	17.15	1,480	1,720	2,120	Ex	С	_	_	_	RF	_
Turgian Service NVD 1.47 S 7.16 - 980 G WPI - RF - - - - - - - RF - - - - - - RF R Restrict in an Initian Initian Initian No - - RF R Restrict in an Initian Initian <thinitian< th=""></thinitian<>	Tungsten Disulfide	WS ₂	1,250	D	7.5	_	_	_	_	_	_	_	_	RF	_
Ungains Relation WSp RF Ungains Relation WSp 94.9 RF Unarium U 1.12 1.12 RF Unarium Christo UC 2.38 1.12 2.00 RF Decomposes Unarium Christo UC_2 2.38 1.038 RF Decomposes 1.007 C Decomposes 1.007 C Decomposes 1.007 C	Tungsten Oxide	WO ₃	1,473	S	7.16	_	_	980	G	W, Pt	_	_	_	RF-R	Preheat gently to outgas. W gives O ₂ loss. n 1.68
Turgen Relation WB2 >940 $=$	Tungsten Selenide	WSe ₂	_	_	9.0	_	_	_	_	_	_	_	_	RF	
Tungsen Faladite WTB	Tungsten Silicide	WSI2	>900	_	9.4	_	_	_	_	_	_	_	_	RF	_
Uninem U 112	Tungsten Telluide	WTeo	_	_	9.49	_	_	_	_	_	_	_	Q	RF	_
Unrum Gradidie UC2 2330 — 1128 — — 2000 — — — — — — C PF Decomposes Utraium Riduation UG2 1300 0 8.30 — N — — — — — — — — — — — — — — RF Decomposes 1/30° C b U02 Unruim (III) Suffici US 2.000 — 1.087 — Decomposes Utraium (IV) Suffici US 2.000 — 1.087 — — — — — = P P P Decomposes Utraium (IV) Suffici US 2.000 5.171 — — — — — D <t< td=""><td>Uranium</td><td>U 1</td><td>1,132</td><td>_</td><td>19.05</td><td>1,132</td><td>1,327</td><td>1,582</td><td>G</td><td>Mo, W</td><td>W</td><td>W</td><td>_</td><td>_</td><td>Films reacts in air</td></t<>	Uranium	U 1	1,132	_	19.05	1,132	1,327	1,582	G	Mo, W	W	W	_	_	Films reacts in air
$ \begin{array}{c} \mbox{Lines} \mbox{With} \label{eq:lines} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Uranium Carbide	UC ₂	2,350	_	11.28	_	_	2,100	_	_	_	_	С	RF	Decomposes
$ \begin{array}{c} \text{Unifum}(0) \ Oxide & U_{2}O_{3} & 1300 & D & 8.30 & - & - & - & - & - & - & W & - & W & - & RF & Decomposes at 1200 ^{\circ} Lo UO_{2} \\ \text{Unifum}(V) \ Oxide & UO_{2} & 2.878 & - & 10.98 & - & - & - & - & W & - & W & - & RF & Decomposes at 300 ^{\circ} Co UO_{2} \\ \text{Unifum}(V) \ Oxide & UP_{2} & - & - & - & 877 & - & - & 1.200 & - & Ta & - & - & - & - & - & - & - & - & - & $	Uranium Fluoride	UF4	960	_	6.70	_	_	300	_	Ni	_	_	_	RF	_
Unsitum (V) Dotide UD2 2.878 - 10.36 - - - W - RF Tacauses decompositon Utanium (I) Sufide US2 - - - - - - RF Decomposes Utanium (I) Sufide US2 > 1.80 - 596 1.12 1.847 Ex W.Mo - - RF Stept decompositon Vanadum V 1.890 - 596 1.132 1.547 Ex W.Mo - - DC Wets Mo. Ebeam preferred.n.3.03 Vanadum Notation Nito - - - - DC Wets Mo. Ebeam preferred.n.3.03 Vanadum (V) Oxide VO2 1.997 S 4.34 - - - - RF RF Numation Stept preferred.n.3.03 Vanadum (V) Oxide VO2 1.997 S 4.42 - - - - RF RF - - <t< td=""><td>Uranium (III) Oxide</td><td>U202</td><td>1,300</td><td>D</td><td>8.30</td><td>_</td><td>_</td><td>_</td><td>_</td><td>W</td><td>_</td><td>W</td><td>_</td><td>RF-R</td><td>Decomposes at 1,300° C to UO₂</td></t<>	Uranium (III) Oxide	U202	1,300	D	8.30	_	_	_	_	W	_	W	_	RF-R	Decomposes at 1,300° C to UO ₂
Unside UP2 - 6.57 - - 1.200 - Ta - - RF Decorpose Unside US >2.000 - 10.87 -	Uranium (IV) Oxide	002	2,878	_	10.96	_	_	_	_	W	_	W	_	RF	Ta causes decomposition
Ubsistant (II) Sufficie US >2.000 = 10.87 = RF Skipt docomposition Vanadum Dorde VD 2.800 = 5.17 = = = = = RF = = = RF = = = RF = = RF = = RF R Space	Uranium Phosohide	UPo	_	_	8.57	_	_	1,200	_	Та	_	_	_	RF	Decomposes
Ubarkum (M) Sulfide US2 >1,100 — 7.96 — — — W — — — RF Slight decomposition Vanadum V 1,890 — 5.66 1,162 1,322 1,547 Ex W,Mo — — — DC Wets Mo. E-beam preferred. n.3.03 Vanadum Carbide VC 2,810 — 5.77 — — - — — — RF — — RF — — Wats Mo. E-beam preferred. n.3.03 Vanadum Minde VQ 2,807 6.13 — — — — — — RF RF — — — — RF RF RF RF Quartice No No No No No No No — — RF RF RF RF RF No <	Uranium (II) Sulide	US	>2.000	_	10.87	_	_	_	_	_	_	_	_	_	_
Vanadum V 1,880 – 5.96 1,162 1,332 1,547 Ex W, Mo – – DC Wets Mo. E-beam preferred. n 3.03 Vanadum Dricke Vb2 2,400 – 5.10 – – – – – – RF – Veta Mo. E-beam preferred. n 3.03 Vanadum Dricke VN 2,320 – 6.13 – – – – – RF – – Veta Mo. E-beam preferred. Vanadum (N) Oxide VQO2 1,967 S 4.34 – – – – – – – – – – – – – – – – – – – V2O3 800 D 3.05 – – – – – – – – V10	Uranium (IV) Sulfide	US ₂	>1,100	_	7.96	_	_	_	_	W	_	_	_	RF	Slight decomposition
Vanadum Borde VB2 2,400 - 5.10 - RF - <td>Vanadium</td> <td>V</td> <td>1.890</td> <td>_</td> <td>5.96</td> <td>1162</td> <td>1332</td> <td>1.547</td> <td>Fx</td> <td>W Mo</td> <td>_</td> <td>_</td> <td>_</td> <td>DC</td> <td>Wets Mo. E-beam preferred in 3.03</td>	Vanadium	V	1.890	_	5.96	1162	1332	1.547	Fx	W Mo	_	_	_	DC	Wets Mo. E-beam preferred in 3.03
Variadium Carbide VC 2810 - 5.77 - <td>Vanadium Boride</td> <td>VBo</td> <td>2,400</td> <td>_</td> <td>5.10</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>RF</td> <td>_</td>	Vanadium Boride	VBo	2,400	_	5.10	_		_	_	_	_	_	_	RF	_
Naradium Natide VN 2,320 - 6.13 -	Vanadium Carbide	VC	2,810	_	5.77	_	_	~1.800	_	_	_	_	_	RF	_
Vanadum (V) Oxide VO2 1.967 S 4.34 - - - - - - RF, RFR Sputter preferred. Vanadum (V) Oxide V205 660 D 3.36 - - - - - Q RF n146, 152, 1.76 Vanadum Slicide VS2 1.700 - 4.42 - - - - - RF n146, 152, 1.76 Vitardum No 619 S 6.66 520 560 690 G Ta - - - RF - - - - - - - RF - RF - - RF - - - - - RF - - RF RF - - - - - RF RF RF - - - <td< td=""><td>Vanadium Nitride</td><td>VN</td><td>2.320</td><td>_</td><td>6.13</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>RF. RF-R</td><td>_</td></td<>	Vanadium Nitride	VN	2.320	_	6.13	_	_	_	_	_	_	_	_	RF. RF-R	_
Character (r) Oracle Volume Column (r) Oracle Volumn (r) Oracle <td>Vanadium (IV) Oxide</td> <td>VOa</td> <td>1.967</td> <td>S</td> <td>4.34</td> <td>_</td> <td>_</td> <td>~575</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>RF RF-R</td> <td>Soutter preferred</td>	Vanadium (IV) Oxide	VOa	1.967	S	4.34	_	_	~575	_	_	_	_	_	RF RF-R	Soutter preferred
Anadulu Silde Vision	Vanadium (V) Oxide	V20r	690	D	3.36	_	_	~500	_	_	_	_	0	RF	n 146 152 176
Name Autors Yo 819 S 6.96 520 560 690 G Ta - <td>Vanadium Silicide</td> <td>VSIA</td> <td>1 700</td> <td>-</td> <td>4 42</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td>RF</td> <td>_</td>	Vanadium Silicide	VSIA	1 700	-	4 42	_	_	_	_	_	_	_		RF	_
Non-term	Ytterbium	Yb	819	S	6.96	520	590	690	G	Та	_	_	_		_
Nature No. 3 1,10 No. 4 No. 4 No. 4 No. 4 Vietnim No. 4 1522 - 4.47 830 973 1,157 Ex W, Ta W W ApO ₃ RF, RF.R Loses O ₂ Yitrium Num Ovide YakjO ₁₂ 1,990 - - - - - - RF, RF.R Loses O ₂ Yitrium Nurdie YF3 1,387 - 4.01 - - - - - RF - - - - RF, RF.R Loses O ₂ 187 0 5.01 - - - - - RF - - - - RF - - - - RF RF Loses O ₂ 187 0 0 0 No. W, Ta W M Mo.2O ₃ RF Decessory 187 0 - - - - RF Processory 187 0 0 0 179 177 250 Ex Mo. W, Ta W W Algo a NS <td< td=""><td>Ytterbium Fluoride</td><td>YhEa</td><td>1 157</td><td>-</td><td>_</td><td>_</td><td>_</td><td>~800</td><td></td><td>Mo</td><td>_</td><td>_</td><td>_</td><td>RF</td><td>_</td></td<>	Ytterbium Fluoride	YhEa	1 157	-	_	_	_	~800		Mo	_	_	_	RF	_
International bits In 2r3 In 7 In 7 <th< td=""><td>Ytterhium Oxide</td><td>YboOo</td><td>2.346</td><td>S</td><td>9 17</td><td>_</td><td>_</td><td>~1.500</td><td>_</td><td>k</td><td>_</td><td>_</td><td>_</td><td>RF RF-R</td><td>L 0.585 Q o</td></th<>	Ytterhium Oxide	YboOo	2.346	S	9 17	_	_	~1.500	_	k	_	_	_	RF RF-R	L 0.585 Q o
Tatum Tatue Tatue <th< td=""><td>Yttrium</td><td>Y</td><td>1.522</td><td></td><td>4 47</td><td>830</td><td>973</td><td>1 157</td><td>Ex</td><td>W Ta</td><td>w</td><td>w</td><td>AbOa</td><td>REDC</td><td>High Ta solublity</td></th<>	Yttrium	Y	1.522		4 47	830	973	1 157	Ex	W Ta	w	w	AbOa	REDC	High Ta solublity
International order Ygregrig 1,300 International order Ym International order Yitrium Doxide Y 20,3 2,410 - 5.01 -	Yttrium Alum Oxide	YaAk Ora	1,990	_		_		.,	6		w	w		RF	Films not ferroelectric
Answer Answer Answer Answer RF, RF-R Loses O ₂ ; films smooth and dear. n 1.79 Zinc Zin 420 - 7.14 127 177 250 Ex Mo, W, Ta W Al ₂ O ₃ Q DC Evaporates well, over wide range of conditions Zinc Antimonide Zn ₃ Sb ₂ 570 - 6.33 - - - - - RF, RF-R Loses O ₂ ; films smooth and dear. n 1.79 Zinc Antimonide Zn ₁ Sb ₂ 570 - 6.33 - - - - - RF, RF-R Loses O ₂ ; films smooth and dear. n 1.79 Zinc Rimide ZnB ₂ 394 - 4.20 - - - - - RF Decomposes. n 1.545 Zinc Rimide ZnB ₂ 872 - 4.95 - - 800 - RF RF Decomposes. n 1.545 Zinc Ninide Zn ₂ N ₂ - 6.60 - Ta, W, MOW, Mo W, Mo Q RF Dedicated vacuum system. Preheat gently to outgas. Evaporates well. n 2.08 Zinc Sufide ZnS 1,700 <t< td=""><td>Yttrium Fluoride</td><td>YEa</td><td>1,387</td><td>_</td><td>4.01</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td><u> </u></td><td></td><td>_</td><td>RF</td><td>_</td></t<>	Yttrium Fluoride	YEa	1,387	_	4.01	_	_	_	_	_	<u> </u>		_	RF	_
The state Total in the state <thtotal in="" state<="" th="" the=""> <thtotal <="" in="" state<="" td="" the=""><td>Yttrium Oxide</td><td>YaQa</td><td>2 4 10</td><td>_</td><td>5.01</td><td>_</td><td>_</td><td>~2.000</td><td>G</td><td>w</td><td>_</td><td>_</td><td>C</td><td>RF RF-R</td><td>Loses O₂; films smooth and clear n 179</td></thtotal></thtotal>	Yttrium Oxide	YaQa	2 4 10	_	5.01	_	_	~2.000	G	w	_	_	C	RF RF-R	Loses O ₂ ; films smooth and clear n 179
Link Link <thlink< th=""> Link Link</thlink<>	Zinc	70	420	_	7 14	127	177	250	Ev	Mo W Ta	w	w	Alcon	DC	Evanorates well over wide range of conditions
Line Huminitation Ling Way State Line Huminitation	Zinc Antimonide	70.000	570	_	6.33	-		-			<u> </u>		74203 a	RE	
Linc Fluinide Zinc Pice Start How File	Zinc Bromide	Z13302	304	-	4 20		_	~300		w	-		-	RE	December n 1 545
Line Tradition Line T Line	Zinc Fluoride	ZnEo	872	_	4.95			~900		P Ta	_		ő	RE	-
Zinc Vide Zing V2	Zine Nitrida	70.0No	012		6.00					Mo			~	DE	Decomocose
Line Oxida Line T Line T <thline t<="" th=""> <thline t<="" th=""> Line T<td>Zinc Oxida</td><td>700</td><td>1 075</td><td>-</td><td>5.61</td><td></td><td>_</td><td>~1.800</td><td>-</td><td></td><td>_</td><td></td><td></td><td>DE D</td><td>n 2 008, 2 029</td></thline></thline>	Zinc Oxida	700	1 075	-	5.61		_	~1.800	-		_			DE D	n 2 008, 2 029
Ends F, not Solution Solution F, not Solution For the solution	Zinc Selenide	7nSe	>1,010	-	5.42			660	- 1	Ta W Mo	W Mo	W Mo	0	RE	Dedicated vacuum system Prohest cently
Zinc Suffde ZnS 1,700 S 3.98 - - -800 G Ta, Mo - - RF Dedicated vacuum system. Nerheat gently to outgas. Films partially decompose. Substrate temp affects sticking coeff. n 2.356 Zinc Telluride ZnTe 1,239 - 6.34 - - - Mo, Ta - - RF Dedicated vacuum system. Nerheat gently to outgas. Films partially decompose. Substrate temp affects sticking coeff. n 2.356 Zinconium Zr 1,852 - 6.49 1,477 1,702 1,987 Ex W - - DC Alloys W. Films reactin air. Zirconium Boride ZrB2 -3,200 - 6.09 - - - - RF - - Zirconium Site Zirconium	2110 Ocionalo	2100	-1,100		0.42			000		ra, m, m,			×		to outnas. Evanorates well in 289
Zhi C duitide Zhi C 1,700 3 3.36 - </td <td>Zine Sulida</td> <td>765</td> <td>1700</td> <td>9</td> <td>3.08</td> <td></td> <td></td> <td>~900</td> <td>6</td> <td>To Mo</td> <td></td> <td></td> <td></td> <td>DE</td> <td>Dadicated vacuum evelam Preheat cently</td>	Zine Sulida	765	1700	9	3.08			~900	6	To Mo				DE	Dadicated vacuum evelam Preheat cently
Zinconium Zr 1,239 6.34 - - - Mo, Ta - - RF Proheat gently to outgoes. Substrate temp affects sticking coeff. n 2.356 Zinconium Zr 1,852 - 6.49 1,477 1,702 1,987 Ex W - - - RF Proheat gently to outgoes. n 3.56 Zinconium Boride ZrB2 -3,200 - 6.09 - - G - - - RF Proheat gently to outgoes. n 3.56 Zinconium Cabide ZrC 3,540 - 6.73 - - G - - - RF - - - Zinconium Nitride ZrN 2,980 - 7.09 - - - - RF - - - - RF - - - - - RF - - - - - - RF RF - - - - - - RF RF R - - - - - RF <td>2no odiloo</td> <td>210</td> <td>1,700</td> <td></td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td>ra, mo</td> <td></td> <td></td> <td>_</td> <td></td> <td>to outras. Films nartially decompose</td>	2no odiloo	210	1,700		0.00					ra, mo			_		to outras. Films nartially decompose
Zinc Telluride ZnTe 1,239 6.34 - - -600 Mo, Ta - - RF Preheat gently to outgase. If 2x00 Zinconium Zr 1,852 - 6.49 1,477 1,702 1,987 Ex W - - - RF Preheat gently to outgase. If 2x00 Zinconium Boride ZrB2 -3,200 - 6.09 - - - G - - - DC Alloys W. Films reactin air. Zinconium Cabide ZrC 3,540 - 6.73 - - G - - - RF - Zinconium Nitride ZrN 2,980 - 7.09 - - - - - RF Revap in 10° T N2. Zinconium Nitride ZrO2 - 5.89 - - - - - RF, RFR Loses O2. Films clear and hard. n 2.13, 2 19, 2.20 n 1.92-1.96, 1.97-2.02 Zinconium Slicate ZSiO ₄ 2,550 - 4.56 - - - - RF n 1.92-1.96, 1.97-2.02<															Substrate terms affects sticking coeff in 2.356
Differentiation 2110 1,253 0.544 - - 000 - <th< td=""><td>Zine Tellurida</td><td>ZnTe</td><td>1 2 3 0</td><td></td><td>6.34</td><td></td><td></td><td>~600</td><td></td><td>Mo Ta</td><td></td><td></td><td></td><td>DE</td><td>Drahast conflute outrage in 3.56</td></th<>	Zine Tellurida	ZnTe	1 2 3 0		6.34			~600		Mo Ta				DE	Drahast conflute outrage in 3.56
Zirconium Boride Zrk2 -3,200 -6,09 - - G - - - RF - Zirconium Boride Zrk2 -3,200 -6,09 - - - G - - RF - Zirconium Boride Zrk 2,980 - 6,73 - 2,500 - - - RF - Zirconium Nitride ZrN 2,980 - 7.09 - - - - - RF Revap in 10° T N2. Zirconium Oxide ZrO2 - - - - - - - RF, RF-R Revap in 10° T N2. Zirconium Slicate ZSiO2 - - - - - - - RF, RF-R Loses O2. Films clear and hard. n 2.13, 2 19, 2 20 Zirconium Slicate ZSiO4_4 Z550 - 4.56 - - - - RF n 192-1.96; 1.97-2.02 Zirconium Slicate ZSiO4_4 Z550 - 4.56 - - - - RF	Zironium	7	1,230	_	6.49	1477	1 700	1 987	Ev	WU, Id	_	_	_	DC	Allove W Films reactin air
Zirconium Solutio Zirco 3,540 - 6,73 - - - - - - RF - Zirconium Cabide ZrC 3,540 - 6,73 - - - - - RF - - - - - RF - - - - - RF Revap in 10° T N2. Zirconium Silot	Zironium Borida	7/8-	~3 200	_	6.00	iyari 	1,702	1,301	6		_	_	_	RE	
Zirconium Nitride ZrN 2,980 - 7.09 - - - - - RF, RF.R Revap in 10° T N2. Zirconium Nitride ZrO2 -2,700 - 5.89 - - - - - RF, RF.R Revap in 10° T N2. Zirconium Oxide ZrO2 -2,700 - 5.89 - - - - RF, RF.R Losses O2. Films clear and hard. n 2.13, 2 19, 2.20 n - - - - - RF n 1.92-1.96; 1.97-2.02 Zirconium Silicate ZSiO4 2.550 - 4.56 - - - - RF n 1.92-1.96; 1.97-2.02 Zirconium Silicate ZSiO4 4.56 - - - - RF RF n 1.92-1.96; 1.97-2.02	Zirconium Carbide	70	3.540	_	6.73	_	_	~2.500	-		_			RE	
Zirconium Oxide ZirCo - - - - - - - - Relia in 10° T My. Zirconium Oxide ZrO2 ~2,700 - 5.89 - - - - - Relia in 10° T My. Zirconium Oxide ZrO2 ~2,700 - 5.89 - - - - REF. Losses O2. Films clear and hard. n 2.13, 2 19, 2.20 - - - - - RF n 1.92-1.96; 1.97-2.02 Zirconium Silicate ZSiO4 2.550 - 4.56 - - - - RF n 1.92-1.96; 1.97-2.02	Ziroonium Mitride	20	2,040	_	7.00	_	_	2,000			_	_		DE DE D	Reven in 10 ³ T No
Zavanum Oxade Zog Z, vol	Zirconium Oxide	7:00	~2,300	_	5.89	_	_	~2.200	6	w	_	_	_	RE REP	Loses On Films dear and hard
Zirconium Silicate ZSiO ₄ 2,550 — 4.56 — — — — — — — — — — — — — — — — RF n 1.92–1.96; 1.97–2.02	2100Hulli OAU8	202	-2,100	_	0.00	_	_	-2,200	0		_	_	_	N, NH	n 2 13 2 10 2 20
Tenning Long Long Long Long Long Long Long Lo	Zirconium Slicate	760.	2 5 50	_	4.56	_	_	_	_	_	_	_	_	RF	n 192–198: 1 97–2 02
	Zirconium Slicide	70%	1700	_	4.88	_	_	_	_	_	_	_	_	RF	

Periodic Table of the Elements

SOS-242[™] Deposition Control Software

IPN 074-551-P1A

IPN 074-551-P1A

www.inficon.com reachus@inficon.com ©2011 INFICON

Trademarks

The trademarks of the products mentioned in this manual are held by the companies that produce them.

LabVIEW[™] is a trademark of National Instruments.

Z-Match® and SQS-242[™] are trademarks of INFICON GmbH.

Access®, ActiveX®, Windows® and Microsoft® are registered trademarks of Microsoft Corporation.

All other brand and product names are trademarks or registered trademarks of their respective companies.

Disclaimer

The information contained in this manual is believed to be accurate and reliable. However, INFICON assumes no responsibility for its use and shall not be liable for any special, incidental, or consequential damages related to the use of this product.

Due to our continuing program of product improvements, specifications are subject to change without notice.

Copyright

©2011 All rights reserved. Reproduction or adaptation of any part of this document without permission is unlawful.

Warranty

WARRANTY AND LIABILITY - LIMITATION: Seller warrants the products manufactured by it, or by an affiliated company and sold by it, and described on the reverse hereof, to be, for the period of warranty coverage specified below, free from defects of materials or workmanship under normal proper use and service. The period of warranty coverage is specified for the respective products in the respective Seller instruction manuals for those products but shall not be less than one (1) year from the date of shipment thereof by Seller. Seller's liability under this warranty is limited to such of the above products or parts thereof as are returned, transportation prepaid, to Seller's plant, not later than thirty (30) days after the expiration of the period of warranty coverage in respect thereof and are found by Seller's examination to have failed to function properly because of defective workmanship or materials and not because of improper installation or misuse and is limited to, at Seller's election, either (a) repairing and returning the product or part thereof, or (b) furnishing a replacement product or part thereof, transportation prepaid by Seller in either case. In the event Buyer discovers or learns that a product does not conform to warranty, Buyer shall immediately notify Seller in writing of such non-conformity, specifying in reasonable detail the nature of such non-conformity. If Seller is not provided with such written notification, Seller shall not be liable for any further damages which could have been avoided if Seller had been provided with immediate written notification.

THIS WARRANTY IS MADE AND ACCEPTED IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, WHETHER OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE, AS BUYER'S EXCLUSIVE REMEDY FOR ANY DEFECTS IN THE PRODUCTS TO BE SOLD HEREUNDER. All other obligations and liabilities of Seller, whether in contract or tort (including negligence) or otherwise, are expressly EXCLUDED. In no event shall Seller be liable for any costs, expenses or damages, whether direct or indirect, special, incidental, consequential, or other, on any claim of any defective product, in excess of the price paid by Buyer for the product plus return transportation charges prepaid.

No warranty is made by Seller of any Seller product which has been installed, used or operated contrary to Seller's written instruction manual or which has been subjected to misuse, negligence or accident or has been repaired or altered by anyone other than Seller or which has been used in a manner or for a purpose for which the Seller product was not designed nor against any defects due to plans or instructions supplied to Seller by or for Buyer.

This manual is intended for private use by INFICON® Inc. and its customers. Contact INFICON before reproducing its contents.

NOTE: These instructions do not provide for every contingency that may arise in connection with the installation, operation or maintenance of this equipment. Should you require further assistance, please contact INFICON.

Table Of Contents

Trademarks

Disclaimer

Copyright

Chapter 1

Introduction

1.1	Introduction	. 1-1
1.2	SQM-242 Deposition Control Card	. 1-2
1.3	Digital I/O	. 1-3

Chapter 2

Quick Sta	art
Introduction	n

2.1	Introduction	2-1
2.2	Single-Layer Process Setup	2-2
2.2.1	Create a New Process	2-2
2.2.2	Edit Layer Parameters	2-3
2.2.3	Edit Rate Ramps	2-4
2.2.4	Edit Deposition	2-5
2.2.5	Edit Pre/Post Conditioning	2-5
2.2.6	Edit Source/Sensor.	2-6
2.2.7	Edit Errors	2-6
2.2.8	Save Edits	2-7
2.3	Single Layer Process Simulation	2-7
2.3.1	Setup Displays	2-8
2.3.2	Start Process	2-8
2.3.3	Preconditioning Phases	2-9
2.3.4	Deposition Phase with one Rate Ramp	2-9
2.4	SoftKey Functions	. 2-10
2.5	Multi-Layer CoDeposition Process	. 2-11
2.6	Conclusion	. 2-15

Chapter 3

SQS-242 Software

3.1	Introduction	. 3-1
3.2	Installation and Registration	. 3-3
3.3	Operation	. 3-3

3.4	Menu	3-4
3.4.1	File: Process	3-4
3.4.2	File: Open and Save Database	3-5
3.4.3	File: Data Logging	3-5
3.4.4	File: Print	3-7
3.4.5	File: User Login	3-7
3.4.6	File: Exit	3-7
3.5	Edit Menu	3-8
3.5.1	Edit: Process	3-8
3.5.1.1	Layer Tab	-10
3.5.1.2	Rate Ramps Tab	-12
3.5.1.3	Deposit Tab	-13
3.5.1.4	Condition Tab	-14
3.5.1.5	Source/Sensor Tab	-15
3.5.1.6	Errors Tab	-16
3.5.1.7	Analog Inputs	-17
3.5.2	Edit: Films	-18
3.5.3	Edit: Materials	-19
3.5.4	Edit: System	-20
3.5.4.1	Outputs Tab	-21
3.5.4.2	Sensors Tab	-22
3.5.4.3	Analog Tab	-23
3.5.4.4	Indexers Tab	-24
3.5.4.5	I/O Tab	-24
3.5.4.6	Card Tab	-28
3.5.4.7	Comm Tab	-29
3.5.5	Edit: Security	-30
3.5.5.1	Users Tab	-30
3.5.5.2	Access Tab	-31
3.6	View Menu	-32
3.7	Software Specifications	-33
3.8	INI File Parameters	-37
o nato v A		

Chapter 4

Digital I/O

4.1	Introduction.	. 4-1
4.2	PLC Installation	. 4-1
4.3	PLC Setup and Test	. 4-4
4.4	5.3 PLC Programming	. 4-4

Chapter 5

Communications

5.1	Introduction	5-1
5.2	Serial Interface	5-1
5.3	Ethernet Interface	5-1
5.4	ActiveX (COM) Interface	5-1
5.5	SQS-242 Comm Program	5-2
5.5.1	Setup for RS-232 or Ethernet	5-2
5.5.2	Setup for Active X Control	5-2
5.5.3	Communicating with the SQS-242 Program	5-2
5.6	Protocol	5-2
5.6.1	Query Command Format	5-3
5.6.1.1	Example: Software Version Query	5-3
5.6.1.2	Example: Response to Software Version Query	5-3
5.6.2	Update Command Format	5-3
5.6.2.1	Example: Set Process Update	5-3
5.6.2.2	Example Response: Set Process Update Succeeded	
5.6.2.3	Example Response: Set Process Update Failed	
5.7	Checksum Calculation	
5.8	Command Summary	5-5
5.8.1	Query Process	5-5
5.8.2	Update Process	5-5
5.8.3	Query/Update Layer	5-6
5.8.4	Query/Update Film	
5.8.5	Query Utility	
5.8.6	Update Utility	5-8
5.8.7	Query Measurement	5-8
5.8.8	Query Register	5-8
5.8.9	Update Register	5-8

Chapter 6

Loop Tuning

This page is intentionally blank.

Chapter 1 Introduction

1.1 Introduction

The SQS-242 Deposition Control Software, see Figure 1-1, works with the INFICON SQM-242 card to provide a powerful, PC based thin film deposition controller that can:

- Measure up to eight quartz crystal sensors simultaneously.
- Control up to six deposition source supplies simultaneously (CoDeposition).
- Provide PreConditioning, multiple rate ramps, and feed/idle phases.
- Graph deposition rate, rate deviation, or power output.
- Store process, film and material parameters in Microsoft Access[®] database
- Provide flexible and reliable digital I/O using an inexpensive PLC (PLC not provided by INFICON).

Figure 1-1 SQS-242 Software

The six Soft Keys provide easy access to the common operating functions. A single tabbed dialog box provides all of the settings required for a thin film process. Material parameters, sensor/source setup, pre/post conditioning, and error conditions are all visible on a single dialog box. Process settings, numeric data, and graphical displays are displayed during all phases of deposition.

The SQS-242 software stores process parameters in a Microsoft Access compatible database. The SQS-242 software can be controlled from another computer using the RS-232 or Ethernet command protocol.

1.2 SQM-242 Deposition Control Card

The SQM-242 is a PCI expansion card for use in computers running the Microsoft[®] Windows[®] operating system. See Figure 1-2. Each card measures up to four quartz sensors via BNC inputs, and supplies the control signal for two evaporation sources via a ¼" stereo phone plug. Up to six SQM-242 cards can be installed in a computer. A single SAM-242 piggyback card with four analog inputs and two control outputs can also be installed.

Figure 1-2 SQM-242 Card

Consult the separate SQM-242 card Operating Manual for detailed information on installing and using the SQM-242 and the SAM-242 cards.

1.3 Digital I/O

Digital I/O for the SQS-242 software can be provided through an inexpensive, external, programmable logic controller (PLC), see Figure 1-3. This allows the PLC, and the associated I/O wiring, to be placed in a convenient location in a wiring cabinet. A single, serial communications cable runs to the computer. The PLC provides electrical isolation, fail-safe operation, and extensive I/O processing capabilities through its ladder logic programming.

Figure 1-3 Programmable Logic Controller (PLC)

This page is intentionally blank.

Chapter 2 Quick Start

2.1 Introduction

This chapter will provide a general overview on how to setup the SQS-242 deposition control program.

- **1** Power On the Computer.
- 2 Start the SQS-242 software from: Start Menu >> Programs >> INFICON >> SQS-242 Codep.
- **3** User Login Dialog Box

The SQS-242 displays a progress bar during program startup, then a User Login dialog box. Select a User Name from the drop down box, enter the Password, then click OK. See section 3.5.5 on page 3-30 for more information on users, passwords, access levels, and registration.

NOTE: The SQS-242 software has one pre-assigned user by default. The user name is Super, with no Password.

4 Process Database

The SQS-242 normally starts with the last active process displayed. If that process is not found, a Database Open dialog is displayed.

5 Main Display

As you operate the SQS-242, the six SoftKey labels along the left of the dialog box will change to display appropriate functions.

Along the top of the display is a menu of less commonly used functions. This menu is available only when the SQS-242 is stopped (i.e., not running a deposition process).

6 Simulate Mode

Simulate mode allows you to familiarize yourself with SQS-242 operation and test process recipes. Simulate Mode will be used for the remainder of this chapter.

If the first SoftKey is labeled **START SIMULATE** then the Simulate mode is active. Otherwise, click the **Edit** menu selection along the top of the display, then click **System**. On the **Card** tab, click the **Simulate** button. Select the **Close** SoftKey to activate Simulate mode.

2.2 Single-Layer Process Setup

We will build a simple single-layer process as an introduction.

2.2.1 Create a New Process

- 1 Click Edit >> Process.
- 2 The **Process Edit** dialog box will display the setup data for the active process. Click **New**.. See Figure 2-1.

Figure 2-1 Process Edit dialog box

💐 Process Edit		×
Sample Save	R <u>e</u> name <u>N</u> ew	/ Delete Copy
Layer Out Film	SetPt Thicknes	ss Time
1 1 Gold Sample 1 2 Silver Sample	10 1 e 15 1.5	0 Cut Layer
		Copy Layer
		Paste Layer
		Paste CoDep
Layer <u>R</u> ateRamps <u>L</u>	Deposit Condition	Source/Sensor Errors
Film	Output	Input
Gold Sample	Output 1	Sensor(s)
SetPtFinal Thic	k. Time EndPt. Thk	. EndPt. System Setup
10.00 1.000	0.00	0.000 Default -
A/s kA	Sec.	KA C Auto Start
Indexers Source Substrate	lleor1 lle	er2 Continuous
	None V None	Manual
Index Index	Index Inde	ex User Prompt

3 Type a new process name using your keyboard, or the on-screen keyboard. Click **Enter** to save the new process name. See Figure 2-2.

Process	
Enter New Name:	
Sample Save	
1 2 3 4 5 6 7 8 9 0 - = q w e r t y u i o p [` a s d f g h j k l ; ' Caps Lock z x c v b n m , . /	Back Space

Figure 2-2 Keyboard

2.2.2 Edit Layer Parameters

4 Click **Layer** to display the layer parameters. See Figure 2-3.

Figure 2-3 Layer tab

Layer Rate	Ramps De	posit <u>C</u> ond	ition <u>S</u> our	ce/Sensor Errors
Fil Gold Sample	m T	Output 1	itput T	Input Sensor(s)
SetPt 10.00 A/s	Final Thick.	Time EndPt. 0.00 Sec.	Thk. EndPt. 0.000 kA	System Setup Default
Source None Index	Substrate None 💌 Index	User1 None 🔽 Index	User2 None 💌 Index	Continuous Manual User Prompt

- **5** A Film is basically a material, plus the settings that will control its deposition. Select **Film >> Gold Sample**.
- 6 We will be simulating a quartz sensor input that is controlling the deposition rate of Output 1. Select **Output >> Output 1**.
- 7 Select Input >> Sensor(s).
- 8 Click SetPt, then adjust the rate setpoint to 10 Å/s.
- 9 Adjust Final Thickness to 1.000 kÅ.

NOTE: Time and Thickness Endpoints won't be used for this example.

- **10** System Setup determines the physical inputs and outputs that are used and displayed on the dialog box. For now use the **Default** system setup.
- **11 Manual Start** causes this layer to wait for user input before beginning. An optional user prompt is possible.
- **12** We won't use any indexers for this example, so select **None**.

2.2.3 Edit Rate Ramps

A thin-film deposition process consists of one or more layers of material evaporated onto a substrate. Figure 2-4 illustrates a complete deposition cycle for a single layer. Refer to this diagram as we set the remaining parameters. It may be desirable to vary the deposition rate during a layer. For example, to deposit slowly at first, then more quickly once the initial material is deposited.

13 Click Rate Ramps. See Figure 2-5.

Figure 2-5 Rate Ramps tab RateRamps Deposit Condition Source/Sensor Errors Layer Ramp StartThick RampTime NewRate Start Thickness <u>04</u> 15 0.40 Insert Ramp KA Ramp Time Delete Ramp 5.00 Sec. Move Up New Rate 15.00 Move Down A/s

- 14 Click Insert Ramp.
- 15 Set Start Thickness to 0.400 kÅ.
- 16 Set Ramp Time to 5 seconds.
- 17 Set New Rate to 15 Å/s.
- **NOTE:** Settings on the Layer and Rate Ramp tabs must be set for each layer in a process. Settings on the remaining four tabs (**Deposit**, **Condition**, **Source/Sensor**, and **Errors**) correspond to the Film that was selected on the Layer tab. This allows a Film's settings to be used in a number of layers, without the need to individually adjust each layer.

2.2.4 Edit Deposition

18 Select the **Deposit** tab. See Figure 2-6.

Figure 2-6 Deposit tab

- **19** Set gain (**P Term**) to **55**.
- 20 Set time constant (I Term) to 0.7.
- 21 Set dead time (D Term) to 0.
- 22 Be sure Shutter Delay Enabled is not selected.
- 23 Set Rate Sampling to Continuous.

2.2.5 Edit Pre/Post Conditioning

24 Before deposition begins, the source material is often brought to a ready state by slowly raising the evaporation source power. Select the **Condition** tab and set each parameter to the values shown in Figure 2-7.

Figure 2-7 Condition tab

2.2.6 Edit Source/Sensor

25 Select the Source/Sensor tab. See Figure 2-8

Figure 2-8 Source/Sensor tab

Layer <u>R</u> ateRamps	Deposit Condition	Source/Sensor	<u>E</u> rrors
Gold	erial	Max. Power 100.00 %	Slew Rate 100.00 %
Sensor Tooling Sensor 1 100.00	(%) Sensor 2	Sensor 3	Sensor 4
Sensor 5	Sensor 6	Sensor 7	Sensor 8

- 26 Select the proper material for this film, Gold.
- **27** Set the maximum power and slew rate that should be used for the selected material.
- **28** Sensor Tooling adjusts for differences in the substrate deposition and that measured by each sensor. Select **100**% for now.

2.2.7 Edit Errors

29 Select the **Errors** tab, see Figure 2-9, to control the actions taken when a sensor or deposition control error occurs. You can elect to ignore errors (unlikely), stop deposition for this layer, or continue deposition at a fixed power level. Select **Stop Layer** for this example.

Figure 2-9 Errors tab

Layer RateRamps Deposit Condition Source/Sensor Errors					
On Error: O Ignore I Stop Layer O Timed Power					
- Control Error -	- Crystal Fail -	- Crystal Quality -	Crystal Stability		
Enabled	Enabled	Enabled	Enabled		
5.00 %	3 Counts	5.00 %	1000 Single Hz		
5.00 sec.		5 Counts	5000 Total Hz		

30 Until a process is well established, it is best to enable only the **Crystal Fail** error checking. Uncheck the remaining error conditions.

2.2.8 Save Edits

- **31** Select the **Close Form** SoftKey to save this one-layer process. If you are prompted **Do you want to change....** answer **Yes** to make this the current process.
- **32** Your new single-layer process is now the active process in the main window. Notice the process, layer, and time information above the graph.

2.3 Single Layer Process Simulation

If you have followed this chapter, you are ready to simulate a deposition process. First, take a look at the information provided on the main dialog box. See Figure 2-10.

Figure 2-10 Information on Main Dialog Box

2.3.1 Setup Displays

Click the View menu and make sure that these options are selected:

- Film Settings
- Film Readings
- Automatic

Note that the settings "ribbon" along the right side of the dialog box displays the pre-conditioning parameters you entered in the previous section.

2.3.2 Start Process

Verify that the top SoftKey label displays **START SIMULATE**. If **START PROCESS** is displayed, follow the instructions at the end of section 2.1 to enable simulate mode. Press the **START SIMULATE** SoftKey to start the process.

The process will start with preconditioning (i.e., **Ramp1**, **Soak1**, **Ramp2**, **Soak2**) as shown in Figure 2-11. Once preconditioning is complete, the process will enter the Deposit phase.

Figure 2-11 Preconditioning

You may want to select **ABORT SIMULATE**, then **START SIMULATE** several times to familiarize yourself with the on-screen displays during preconditioning. You may also want to use the settings ribbon to adjust parameters while the process is running.

2.3.3 Preconditioning Phases

Because we selected **Automatic** in the **View** menu, the graph displays **Output Power** during preconditioning, then switches to **Rate** during the deposition phase.

As shown in Figure 2-12, the initial deposition rate was 10 Å/s until a thickness of .400 kÅ. Then the deposition rate was ramped up to 15 Å/s, and held until the desired final thickness of 1.000 kÅ was achieved. At this point, this single-layer process is finished.

2.3.4 Deposition Phase with one Rate Ramp

You should adjust the PID parameters on the setting ribbon, then Start/Stop the process several times to become familiar with their effect on control loop response.

NOTE: In Simulate Mode, a deposition rate is not "measured" until the output power exceeds 50%.

2.4 SoftKey Functions

As you have seen, the SoftKey functions remain constant during deposition. Spend a few minutes to become familiar with each of these SoftKey functions.

START PROCESS

Starts the first layer of a process when **START** is pushed. If **AUTO** \rightarrow **MAN** is shown on the third SoftKey (AUTO mode) the process starts PreConditioning. If **MAN** \rightarrow **AUTO** is shown on the third SoftKey (**MANUAL** mode) the process immediately starts in the Deposition phase.

ABORT PROCESS

Aborts the process. The process can only restart at the first layer.

START LAYER

Starts a stopped layer, or a layer that has been designated Manual Start in the process database. Starts the layer based on the state of the AUTO >> MAN SoftKey as described above.

STOP LAYER

Stops the current layer. Also changes the function of the first SoftKey to **NEXT LAYER**.

NEXT LAYER

Abandons the current layer and moves to the next layer in the process. If it is the last layer of a process, the same as pushing **ABORT PROCESS**.

<u>AUTO</u>→<u>MAN</u>

When $AUTO \rightarrow MAN$ is pushed, the source output is set to manual control. You may adjust the output using the settings ribbon. Because the PID loop is not running, you can manually set the output power to different levels and observe the associated deposition rate.

<u>MAN</u>→<u>AUTO</u>

Returns the output to PID loop control. If the process is running (**ABORT PROCESS** and **STOP LAYER** shown on the first two SoftKeys) deposition continues. If the process is stopped, sets the output to zero and awaits a start command.

ZERO

Resets the thickness reading to zero.

NEXT FILM

Sequences the setting ribbon through each Film in a codeposition layer.

NEXT SETTING

When the settings ribbon is shown, sequences the setting knob action through each of the displayed parameters.

2.5 Multi-Layer CoDeposition Process

Our final example builds on the previous sections. If you have modified the setup of your process, return to section 2.2, Single-Layer Process Setup, on page 2-2 and adjust the process to those values. When your single-layer process matches section 2.2, complete these steps:

1 Duplicate a Layer

Open the Edit Process dialog box. Click on Layer 1, click the **Layer** tab, then click **Copy Layer**. Now click **Paste Layer**. A duplicate Gold Sample film will be added as Layer 2. Click **Paste Layer** again to add a third Gold Sample layer.

2 Select a CoDep Film

Select Layer 3 in the layers list. Select Films >> Silver Sample. Select Output >> Output 2. The layers list will update to show the new Silver Sample film assigned to Layer 3.

3 Add a CoDep Layer

Select Layer 3 in the layers list, then click Cut Layer. Now select Layer 1. Click **Paste CoDep**. The Silver Sample film will be added below Gold Sample as a codeposition layer. Your setup should match Figure 2-13.

🖥 Process Edi	t				×
Sample Save	•	R <u>e</u> name	New	Delete	Сору
Layer Out I	Film	SetPt	Thickness	Time	
1 1 G	iold Sample ilver Sample	10 10	1	0	Cut Layer
2 1 G	iold Sample	10	1	0	Copy Layer
					Paste Layer
					Paste CoDep
Layer Rate	eRamps De	posit C	ondition S	ource/Sen	sor <u>E</u> rrors
Fi	ilm		Output		Input
Gold Sample 🔹		Outpu	t1 💌	Senso	or(s) 🔹
SetPt	Final Thick.	Time End	Pt. Thk. End	dPt. Sys	stem Setup
10.00	1.000	0.	0.00 0.000 Default		lt 🗾
A/s	kA	Sec.	kA	0	Auto Start
Source	Substrate	l leor1	Liser2		Continuous
None -	None -	None	None -	1 –	Manual
Index	Index	Index	Index	-	

Figure 2-13 Added CoDep Layer

We now have two layers in our process. Layer 1 has Gold being deposited from source Output 1 and Silver is being codeposited on Output 2. Layer 2 is Gold alone.

- **HINT:** It's easiest to copy a layer, then paste several temporary layers of that type as additional layers. Next, assign the films and outputs that you want to each of these additional layers. Now use **Cut Layer** on the temporary layers, and **Paste CoDep** to assign the film to the desired codeposition layers. Remember that each film in a codeposited layer must be assigned to a different source output! Review this example until you are comfortable with these concepts.
- 4 Edit Layer 1 Rate & Thickness

Click Silver Sample in the list of layers. Set Initial Rate to 15 Å/s, Final Thickness to 1.500 kÅ. Click the Rate Ramps tab and set Start Thickness to 0.400 kÅ, Ramp Time to 15 seconds, and New Rate to 0 Å/s.

5 Edit Layer 2 Rate & Thickness

Click the Layer tab, then click Layer 2 Gold Sample. Set Final Thickness to **0.5000** kÅ.

6 Set Layers to Auto Start

At the end of deposition, you may choose to have the next layer wait for a Start Layer command, or to start automatically. Select each Layer in the layers list, then click **Auto** to set that layer to start automatically.

Verify that your process matches the one shown in Figure 2-14.

Process Edit	Denemo	Neu	Delete	×
Layer Out Film	SetPt	Thickness	Time	
1 1 Gold Samp 1 2 Silver Sam	le 10 ple 15	1 1.5	0	Cut Layer
2 1 Gold Samp	le 10	0.5	0	Copy Layer
				Paste Layer
	r			Paste CoDep
Layer <u>R</u> ateRamps	Deposit Co	ondition So	urce/Sens	sor <u>E</u> rrors
Film Gold Sample	Output	Output	Senso	Input (s) •
SetPt Final Th	ick. Time End	IPt. Thk. End	IPt. Syst	tem Setup
A/s kA	Sec.	kA kA		Auto Start
Source Substrat	e User1	User2		Anual
	Index	Index		

Figure 2-14 Process Edit Dialog Box

7 Edit Silver Conditioning

Select the **Condition** tab and the **Silver Sample** layer. Set each parameter to the values shown in Figure 2-15.

Figure 2-15 Condition Tab for Silver Sample Layer

8 Save Edits

Click **Close Form** or press the first SoftKey to save this two-layer codeposition process. Answer **Yes** if it displays the **Do you want to change....** message box to make this the current process.

9 Start Process

Press the **START SIMULATE** SoftKey to start the first layer preconditioning phases. Note that two outputs are displayed for this codeposition layer.

Preconditioning of the two materials is entirely independent. If the preconditioning of one layer takes longer than the other, the start times are adjusted so that the end times coincide.

When preconditioning ends, codeposition of the two materials begins.

Your response should be similar to the graph shown in Figure 2-16 (your vertical scale may be slightly different). The slight ringing on the waveforms indicates some further tuning may be desired. However, this is an example of a reasonably well tuned loop.

Figure 2-16 Start Process Response

At 0.400 kÅ thickness, the Silver Sample deposition rate ramps down from 15 Å/s to 0. Similarly, at 0.400 kÅ thickness the Gold Sample film ramps to a higher deposition rate of 15 Å/s. Because the initial rate for Gold was set lower than the initial rate for Silver, Gold reached its 0.400 kÅ thickness rate ramp trigger later in the deposition cycle.

Try a P Term in the 25-30 range (less gain) for both Gold and Silver to decrease the loop susceptibility to noise. Increasing the I Term a little, say toward 1.0, will lessen overshoot during rate changes. The D term can be thought of as a "dead band" term. Most systems require little or no D term.

2.6 Conclusion

Spend some time with this process to become familiar with its setup and the effect of changes on deposition performance.

Because we selected Simulate Mode at the beginning of this Quick Start session, the SQM-242 card is "faking" an actual process. You can use the Simulate feature at any time to become familiar with SQS-242 operation and the effect of various settings on process performance. It is also a very useful feature for pre-testing your process setups. Return to the **Edit** menu, then select **System** and set the **Mode** to **Normal** to begin running your real process with the SQS-242 software.

This page is intentionally blank.

Chapter 3 SQS-242 Software

3.1 Introduction

This chapter covers the minimum system connections and initial setup required to run the SQS-242 software. Consult the SQM-242 operating manual for more detailed instructions. See Figure 3-1.

1 Sensor Input Connections

Connect the BNC cables and oscillators from your vacuum chamber feedthrough to the desired SQM-242 Card Input(s). Refer to Chapter 2 of the SQM-242 manual for detailed instructions on system hookup to the SQM-242 card(s).

2 Source Output Connections

Connect the dual phone plug from the SQM-242 output jack to your evaporation supply control input. Refer to Chapter 2 in the SQM-242 manual for detailed instructions on wiring the SQM-242 output phone plug.

3 Digital I/O Connections

Digital I/O is not required for initial operation of the SQS-242 software. Perform initial setup and checkout of the SQS-242 before connecting your digital I/O. See Chapter 4 for detailed information on wiring the SQS-242 for digital I/O.

Care should be exercised to route cables as far as practical from other cables that carry high voltages or generate noise. This includes other line voltage cables, wires to heaters that are SCR-controlled, and cables to source power supplies that may conduct high transient currents during arc down conditions

A typical deposition cycle for a thin film is shown in Figure 3-2. The cycle can be broken into three distinct phases: pre-conditioning (ramp/soak), deposition, and post-conditioning (feed/idle)

Figure 3-2 Typical Deposition Cycle

During pre-conditioning, power is applied to prepare the source material for deposition. The first ramp/soak preconditioning phase is used to bring the material to a uniform molten state. The second ramp/soak phase is typically set to a power that is near the desired deposition rate.

When pre-conditioning ends, PID rate control of deposition begins. Initially, the substrate material may remain shuttered until the desired deposition rate is achieved (shutter delay). Once the control loop achieves the desired rate, the shutter opens and deposition begins. Multiple deposition rates (rate ramps) can be programmed.

When the desired thickness is reached, the evaporation source is set to feed or idle power. At this point the process may be complete, or deposition of another film layer may begin. Up to six separate films can be codeposited within a single layer. There is no practical limit to the total number of processes, layers, or materials that can be stored in the process database.

3.2 Installation and Registration

The SQM-242 card can be installed before or after the SQS-242 software. Consult the separate SQM-242 card User's Guide for installation information. To install the program, insert the disk or CD-ROM. Click Start, then Run, then type <d>:Setup (where <d> is the drive you are using). Click OK to begin installation, and follow the on-screen prompts. When installation is complete, you may be prompted to restart the computer.

To start the SQS-242 program, click Start >> Programs >> INFICON >> SQS-242. If you see this Registration dialog box appear (see Figure 3-3.), you have a older version of the SQS-242 software. contact INFICON for the latest version which removes this registration requirement.

Figure 3-3 Registration Dialog Box

SQS-242 Registration						
•	This software is not regsitered and will expire in 30 runs. Registration information is on the CDROM sleeve.					
	Press OK to REGISTER, or CANCEL to SKIP registration.					
	OK Cancel					

3.3 Operation

When the program is first started, it displays a progress bar during startup, then a User Login dialog box (see Figure 3-4).

NOTE: The SQS-242 software ships with one pre-assigned user. The user name is Super, with no Password.

Figure 3-4 User Name

User <u>N</u> ame:	Super				
<u>P</u> assword:					
Cancel OK User Login					
j.					

Select a User Name from the drop down box, type in the Password, then click OK to start the program.

If your software is configured for keyboardless operation, an on-screen keyboard will appear as shown below. You can use your normal keyboard or mouse to "type" the password, then click Enter. See System Setup, SQM-242 Setup later in this chapter to enable or disable the on-screen keyboard (see Figure 3-5).

Figure 3-5 On-screen Keyboard

An Access Level is associated with each User Name. The Access Level controls which software functions are available to each user. For example, only users with an Access Level of Supervisor can add new users. See the Security section of this chapter for information on setting up users.

The remainder of this chapter covers the purpose and operation of each software function, arranged by menu selections. For a more "operational" approach, consult the previous Quick Start chapter.

Menus: The menus along the top of the main dialog box provide access to functions for building deposition processes, configuring the hardware for your vacuum system, and data display.

SoftKeys: The six switches to the left of the display are used for the normal operation of the instrument, and to navigate the setup programs (see below for the individual switch functions). Just move the cursor over the key label on dialog box and single click the mouse. You can also use the keyboard F1 to F6 function keys to simulate the front panel function switches. The SoftKeys change during operation to address different user input requirements.

3.4 Menu

NOTE: The current process must be stopped for the File menu to be available.

3.4.1 File: Process

Used to select a process from a list of all processes in the current database. If the process selected is different than the current process, you are prompted to confirm the change.

3.4.2 File: Open and Save Database

Open Database: Selects a process database to be used for deposition. Remember, a single process database may contain an unlimited number of processes, films, and materials. See Figure 3-6.

Open Databa	se File				? ×
Look in: 🖂	νь	- 1		ř	8-8- 8-8- 8-8-
Sid142V21	0				
1 142.mo 1 142.mo 1 142.mo	3D				
					_
File <u>n</u> ame:	SID142.mdb				<u>O</u> pen
Files of <u>type</u> :	Database files (*.mdb)		•		Cancel

Figure 3-6 Open Database File dialog

Save Database As: Saves the current process database to disk under a different name. This is useful for saving the process database to floppy disk (for backup!), or for making trial changes without affecting your working database. Process databases are saved in Microsoft Access[®] format.

Once again, a pop-up keyboard may appear. If you want to browse, just select Cancel from the pop-up keyboard.

3.4.3 File: Data Logging

Logs data from a deposition process to a disk .LOG file. There are four options for file naming and logging. See Figure 3-7.

Log File: Select None to disable data logging. If Overwrite is selected, the last run of the process is saved as FileName.LOG (where FileName is the name shown in the FileName text box). Subsequent runs overwrite the log file. If Append is selected, each run is appended to FileName.LOG. If Run# is selected, each run of the process is saved as a separate file under the format FileName_Run#.LOG.

Changing Run# on this dialog box will also change the Run# displayed at the top of the main program dialog box.

Figure 3-7 Data Logging

Data Logging	
Log File	Events to Log
None	🔲 End Deposit Phase
O Overwrite	End Each Phase
C Append	☐ I/O Events
O Run # 1	Timed 15 Sec.
Filename:	Sensors
Sample Save	Analog Inputs
Select View	Readings (yymmdd.log)
-Format	
 Text 	Cancel
C Spreadsheet	

Normally, the log file is saved to the folder where the program is installed. If desired, you can click Select and navigate to a different folder. Log files can be viewed in Notepad by clicking the View button.

NOTE: To avoid delays in data acquisition DO NOT log data to a floppy disk file. Instead, save to the hard disk, and transfer the files to a floppy disk later.

Events to Log: A number of "events" can trigger a data entry in the log file. End Deposit Phase records process data (rate, thickness, time, etc.) at the end of each layer's deposit phase. Similarly, End Each Phase logs data at the end of each phase (conditioning, depositing, etc.). I/O Events logs data each time an external digital input or output changes.

Timed logging records data at the selected time intervals throughout the process. Click the Sensors box to include individual sensor data in addition to the normal film based data. Click Analog Inputs to also log that data.

Finally, click Readings to log every reading from the SQM-242 card(s). The file will be saved in the application directory with a name in yymmdd.log format. That is, readings logged on January 15, 2011 will be saved as 110115.log.

NOTE: This file can grow quite large and cause Windows to slow significantly. Typically, the Timed option is a better choice unless you must record every reading. When Readings is selected, a reminder dialog box appears each time the SQS-242 program is started. **Format**: There are two formats for writing data. If Spreadsheet is selected, each entry is a comma-delimited line of data. If Text is selected, the data is formatted for easy reading. The first few lines of the LOG file is a heading that illustrates the file format and content.

NOTE: To use a different delimiter than a comma, change the SQS242.INI file so that under the [DataLog] section, the LogDelimit= entry shows the character you want to use. To use a <TAB> character, type the word Tab. See section 3.8 on page 3-37.

3.4.4 File: Print

Print Process: Prints the parameters for the current process to the system printer. Select Print to File in the Printer Setup Menu to print the data to a file.

Print Setup: Selects and modifies the current system printer.

3.4.5 File: User Login

Displays the User Login dialog box so that a different user may log in. The existing user is logged off automatically. The user Access Level changes immediately to that of the new user. See the Edit, Security section for more information on Users, Passwords, and Access levels.

3.4.6 File: Exit

Exits the SQS-242 deposition control program and saves the current data.

3.5 Edit Menu

3.5.1 Edit: Process

A process is a sequence of thin film layers. Multiple films deposited in the same layer are known as CoDeposition. The Process Edit dialog box, see Figure 3-8, provides the functions needed to develop a thin film deposition process from the database of existing films and materials.

💐 Process Ec	dit				×
Sample Sav	e 🔽	R <u>e</u> name	New	Delete	Сору
Layer Out	Film	SetPt T	hickness	Time	
1 1 1 1 2	1 1 Gold Sample		1 1.5	0 0	Cut Layer
2 1	1 Gold Sample 10 0.5 0		0	Copy Layer	
					Paste Layer
					Paste CoDep
Layer Ra	teRamps De	posit <u>C</u> on	dition Sou	rce/Ser	nsor <u>E</u> rrors
	Film	о	utput		Input
Gold Samp	ole 💽	Output 1	•	Senso	or(s) 🔹
SetPt	Final Thick.	Time EndPt	. Thk. EndPt	. Sy	stem Setup
10.00	0.500	0.00	0.000	Defau	ilt 🔽
A/s		Sec.		0	Auto Start
Indexers -	Quile strets	1.1	110	0	Continuous
Nere		Nene	Nere D	•	Manual
					*
				-	

Figure 3-8 Process Edit dialog

Controls along the top of the Process Edit dialog box apply to the entire process:

Process: A dropdown box that selects the process to be edited. Defaults to the current process. Below the process dropdown, a listing of each layer assigned to the Process. CoDeposition layers are listed with the same layer number, but a different output.

Rename: Edits the name of the selected process.

New: Creates a new process. Since every process must have at least one film, the first film of the currently selected process is used.

Delete: Deletes the selected process from the database. There is no undelete!

Copy: Creates a duplicate of the currently selected process.
Layers List: To select a process layer, click on it in the Layers list.

Cut/Copy/Paste the selected layer as described below:

Cut Layer: Removes the selected layer from the process and places the layer on the clipboard.

Copy Layer: Places the layer selected in the Layers list box on the clipboard, without removing it from the process.

Paste Layer: Inserts the clipboard layer <u>above</u> the currently selected layer in the Layers list box. Existing layers are shifted down.

Paste CoDep: Pastes the clipboard layer as a CoDeposition layer at the currently selected layer number. Attempting to paste a layer that uses an output already assigned to the selected layer generates an error message.

HINT: To add layers to a process, it is easiest to select an existing layer in the layers list, then click Copy. Click Paste repeatedly to insert several temporary layers. Next, assign the proper film and layers parameters to each of these temporary layers.

To change one of the temporary layers to a CoDep layer, highlight the temporary layer and click Cut Layer. Next click the layer desired for CoDep and click Paste CoDep to assign the selected layer.

Controls in the tabbed control apply to the layer selected above, in the Layers list. The Layer and Rate Ramp tabs assign layer-specific parameters to the selected layer. Note that captions on the Layer tab may change, depending on the input and output selections. The remaining tabs provide access to the film assigned to the selected layer.

NOTE: Edits to the Deposition, Condition, Source/Sensor, and Error tabs will affect all processes and layers that use the selected film!

3.5.1.1 Layer Tab

Figure 3-9 Layer Tab

Film DropDown Box: Assigns a film to the selected layer. A film is basically a Material, plus the other settings shown on the Deposit, Condition, Source/Sensor, and Error tabs.

Output DropDown Box: Selects the output that is used for deposition of the selected layer's film. A particular film often uses the same output (i.e., a thermal boat or E-Beam pocket).

NOTE: Due to the way outputs are stored in the process database, the physical output number (not its name) is listed in the layers listing. Outputs 1 and 2 refer to the first SQM-242 card outputs. Outputs 3 and 4 refer to the second SQM-242 card outputs (if installed). Outputs 13 and 14 are the SAM-242 card outputs (if installed).

Input DropDown Box: Selects the input used to measure and control deposition of the selected layer. The combination of an output and its input defines the deposition "control loop" for the selected layer. The Input selection can significantly alter operation of the deposition phase, as described in the following discussion on the SetPt parameter.

SetPt: The function of the setpoint parameter depends on the Input dropdown. If Sensor(s) are used as the input, the setpoint is Rate (in Å/s). This sets the initial Rate setpoint for the selected layer. Rate is controlled by the PID parameters for the film assigned to the layer. If no rate ramps are defined for the layer, this is the rate setpoint for the entire layer.

If the Input selected is Timed Power, the setpoint is shown as % Power. This sets a fixed % output Power during deposition. In Timed Power the Time Endpoint establishes the length of time for the deposition cycle. The layer will end when either the time endpoint is reached, or when the Final Thickness is reached, whichever occurs first.

If one of the SAM-242 analog inputs are selected, the setpoint is in volts (or the analog input's corresponding user-defined units). The layer will end when either Time Endpoint or Final Thickness is reached, whichever occurs first. See the Analog Inputs section later in this chapter for a discussion of programming for analog inputs.

Final Thickness: Sets the endpoint thickness for the layer. When final thickness is reached, deposition is stopped for that layer and the feed/hold phase is entered.

Time EndPoint: Sets an arbitrary time, after deposition begins, when the time setpoint relay is activated. During % Power and Analog Input deposition, it also sets the length of the deposition cycle.

Thickness EndPoint: Sets an arbitrary thickness that activates the thickness limit relay.

Auto/Manual/Continuous Start: Auto Start begins the next layer automatically upon completion of the previous layer. Continuous ignores Conditioning phases and controls continuously at rate setpoint (see Analog Inputs). If Manual Start is selected, the previous layer ends at its idle power and waits for the user to push the Start Layer switch. An optional User prompt can be entered for Manual Start layers. (This feature can be disabled by editing ShowPrompts in the SQS242.INI file).

NOTE: The following parameters are common to all of the films in a layer. In the previous dialog box shot for this section, both layer 1.1 and 1.2 would share common values for the following parameters. Layer 2.1 could have different values.

System Setup: System setup assigns outputs to their controlling sensors (called sensor mapping). It also determines which physical sensor and output connections are displayed on the main dialog box. See section 3.5.4 Edit: System for detailed system setup information.

Source Index: Assigns each film to a specific source indexer pocket (one of 16 values). Each of the six possible outputs is associated with a unique source indexer. These values are sent to the digital I/O (PLC) at the beginning of each layer.

Substrate Index: If using a substrate indexer, assigns the substrate to one of 16 possible values. These values are set at the beginning of each layer.

User1/User2 Index: These additional values are output to the PLC for use as needed. Common applications are to select external equipment configurations. (The Index names, the range of values (0 to 15, or 1 to 16), and the first entry can be customized by editing entries in the SQS242.INI file - See section 3.8).

3.5.1.2 Rate Ramps Tab

Rate ramps cause changes to the deposition rate over time under PID control. Each rate ramp has a starting thickness, an elapsed time to ramp to the new rate, and a new rate setpoint. Each process layer can have an unlimited number of rate ramps. See Figure 3-10.

Process Edit Sample Save Rename Laver Out Film SetPt	<u>N</u> ew De	lete Copy
11Gold Sample1012Silver Sample1521Gold Sample10	1 0 0.5 0 0.5 0	Cut Layer Copy Layer Paste Layer
Layer RateRamps Deposit Condition Ramp StartThick RampTime NewRate 1 0.5 30 1.5	on <u>S</u> ource/Sensor <u>F</u> e Insert Ramp	Start Thickness
	Delete Ramp Move Up Move Down	Ramp Time 30.00 Sec. New Rate 1.50 A/c

Figure 3-10 Rate Ramps tab

Insert Ramp: Inserts a new rate ramp for the selected layer, at the selected position in the rate ramps list. Existing rate ramps are shifted down.

Delete Ramp: Deletes the selected rate ramp.

Move Up: Shifts the selected rate ramp up one position.

Move Down: Shifts the selected rate ramp down one position.

Start Thickness: The thickness that triggers a timed ramp to a new rate. (Start thickness should be greater for each subsequent ramp, and less than the final layer thickness, otherwise the rate ramp is ignored.)

Ramp Time: The time (in seconds) to ramp to the new rate. If the rate ramp is too fast, a PID control error may be generated.

New Rate: The new deposition rate setpoint for the selected layer.

3.5.1.3 Deposit Tab

The **Deposit** tab contains parameters that directly affect the deposition phase of the process cycle. See Figure 3-11.

Figure 3-11 Deposit tab

Sample Save	Rename	New Delete	Copy
, Layer Out Film	SetPt TI	nickness Time	
1 1 Gold Se 1 2 Silver S	imple 10 Sample 15	1 0	Cut Layer
2 1 Gold Sa	imple 15	0.5 0	Copy Layer
			Paste Layer
			Paste CoDep
Layer RateRamps	Deposit Condition Shutter Delay ✓ Enabled Accuracy 5.0 % Wait Hold 60.00 3.00 Sec. Sec.	Source/Sensor Erro Rate Sampling - Continous Accuracy Based Sample 10.00 Sec.	10.00 % Hold 10.00 Sec.

P Term: Sets the gain of the control loop. High gains yield more responsive, but potentially unstable loops. Try a value of 25, then gradually increase/decrease the value to respond to step changes in rate setpoint.

I Term: The integral term controls the time constant of the loop response. A small I term, say 1 to 3 seconds, will smooth the response of most loops.

D Term: The differential term causes the loop to respond quickly to changes. Use 0 or a very small value (.1 x I Term) to avoid oscillations.

Shutter Delay: It is often desirable to assure stable process control before the substrate shutter opens. Enabling shutter delay requires that the system reach the programmed shutter delay Accuracy, and maintain that accuracy before deposition begins. If the accuracy is not reached within Wait seconds, the process halts. If

accuracy is achieved, and maintained for Hold seconds, then the substrate shutter opens and deposition begins. The Thickness reading is zeroed at the end of the shutter delay period.

Rate Sampling: Rate sampling can extend the life of crystals. With rate sampling, the deposition rate is sampled for a period of time, then the sensor shutter is closed. Power is then held at the same level as the final power setting during the sample period.

Continuous selects no sampling; the sensor shutter remains open during deposition. Accuracy Based sampling opens the shutter until the desired accuracy is reached, leaves the shutter open for Sample time, then closes the shutter and holds power constant for Hold time. Time Based sampling opens the shutter for a fixed period of time then closes it for a fixed time.

3.5.1.4 Condition Tab

Before the deposition begins, it is often necessary to PreCondition the source material. This places the system at the proper power level to achieve rapid PID control when deposition begins. See Figure 3-12.

Process Edit			×
Sample Save	▪ R <u>e</u> name	<u>N</u> ew Dele	te Copy
Layer Out Film	SetPt	Thickness Time	
1 1 Gold Sam 1 2 Silver Sar	ple 10 pole 15	1 0 05 0	Cut Layer
2 1 Gold Sam	ple 10	0.5 0	Copy Layer
			Decto Lavor
			Paste CoDep
Layer RateRamps	Deposit Co	ndition <u>S</u> ource/Se	ensor <u>E</u> rrors
- Pro Condition			
Fie Condition		Post Condition —	
Ramp1 Pwr	Ramp2 Pwr _	Feed Power	Idle Power
Ramp1 Pwr 15.00	Ramp2 Pwr -	Feed Power	Idle Power
Ramp1 Pwr 15.00 %	Ramp2 Pwr	Feed Power	Idle Power
Ramp1 Pwr 15.00 % Ramp1 Time	Ramp2 Pwr 7 50.00 7 % Auto Ramp2 Time	Post Condition Feed Power 0.00 % Ramp Time	Idle Power 0.00 % Ramp Time
Ramp1 Pwr 15.00 % Ramp1 Time 5.00 Sec	Ramp2 Pwr	Post Condition Feed Power 0.00 % Ramp Time 0.00 Sec	Idle Power 0.00 % Ramp Time 0.00 Sec
Ramp1 Pwr 15.00 % Ramp1 Time 5.00 Sec. Soak1 Time	Ramp2 Pwr 50.00 % Auto Ramp2 Time 5.00 Sec. Soak2 Time	Post Condition Feed Power 0.00 % Ramp Time 0.00 Sec. Feed Time	Idle Power 0.00 % Ramp Time 0.00 Sec.
Ramp1 Pwr 15.00 % Ramp1 Time 5.00 Sec. Soak1 Time 5.00	Ramp2 Pwr 50.00 % Auto Ramp2 Time 5.00 Sec. Soak2 Time 5.00	Post Condition Feed Power 0.00 % Ramp Time 0.00 Sec. Feed Time 0.00	Idle Power 0.00 % Ramp Time 0.00 Sec.
Ramp1 Pwr 15.00 % Ramp1 Time 5.00 Sec. Soak1 Time 5.00 Sec.	Ramp2 Pwr 50.00 % Auto Ramp2 Time 5.00 Sec. Soak2 Time 5.00 Sec.	Post Condition Feed Power 0.00 % Ramp Time 0.00 Sec. Feed Time 0.00 Sec.	Idle Power 0.00 % Ramp Time 0.00 Sec.

Figure 3-12 Condition tab

Ramp 1: Ramp power sets the power level that is desired at the end of the ramp phase, in % of full scale. Ramp time sets the time to ramp with a linear rate from the initial power to the Ramp power. Soak time sets the time the output remains at the ramp power level.

Ramp 2: Ramp 2 functions are the same as Ramp 1. Typically, Ramp 2 power is set near the power level required to match the desired initial deposition rate. Selecting the Ramp2 Power Auto checkbox stores the power over the last few seconds of the deposit phase for this film. That value is used as the Ramp2 power for the next run of the selected film.

Feed: The feed phase begins immediately after deposition is complete. It holds output power at the level and time required to wire feed new material.

Idle: The Idle phase follows the Feed phase.

3.5.1.5 Source/Sensor Tab

The Source/Sensor tab controls the physical setup of the deposition system. See Figure 3-13.

Figure 3-13 Source/Sensor tab

Process Edit			
Sample Save	<u> </u>		Jele <u>t</u> e Copy
Layer Out Film	SetPt Th	iickness Time	
1 1 Gold Sa	imple 10		Cut Layer
2 1 Gold Se	ample 15 ample 10	0.5 0	Copy Layer
			Paste Layer
			Paste CoDep
Layer <u>R</u> ateRamps	Deposit Conditio	n <u>S</u> ource/Sensor	Errors
Source Mate	rial	Max. Power	Slew Rate
Gold	-	75.00	100.00
		%	%
-Sensor Tooling (%)		
Sensor 1	Sensor 2	Sensor 3	Sensor 4
Sensor 5	Sensor 6	Sensor 7	Sensor 8

Material: Selects the physical deposition material for the film selected on the Layers tab. Selecting a material sets the Density and Z Factor, as defined in the Edit Materials dialog box.

Max Power: The maximum output power allowed for the selected output. The full scale output voltage is a function of the deposition power supply input specifications, and is set in the Edit System menu, Outputs tab. Max Power controls the maximum % of the full scale power that can be used by this film in all phases (PreConditioning, Deposition, and Feed/Idle).

Slew Rate: The maximum power change allowed on an output, per second. If rate ramps or PID power requirements exceed this value, an error will occur.

Sensor Tooling: Adjusts for sensor measured deposition rates that differ from the substrate deposition rate. For example, if the sensor sees only 50% of the substrate rate, set the value to 200%. Setting Tooling to 0% causes a sensor to be ignored for this film.

The System Setup selection on the Layer tab establishes which sensor(s) are visible. Only those sensors "mapped" to the layer's output are visible.

3.5.1.6 Errors Tab

Several source or sensor error conditions are possible during deposition. This tab establishes the program's response to errors. See Figure 3-14.

NOTE: It is best to leave all error settings, except **Crystal Fail**, disabled until you are confident of the stability and repeatability of your process.

Sample Save	- Bename	e New	Nelete Conv
Layer Out Film	SetPt	Thickness Time	
1 1 Gold S 1 2 Silver	Sample 10 Sample 15	1 0 0.5 0	Cut Layer
2 1 Gold S	Sample 10	0.5 0	Copy Layer
			Paste Layer
	τ	1	Paste CoDep
Layer RateRamp	s <u>D</u> eposit <u>C</u> ondi	ition <u>S</u> ource/Sensor	Errors
O Ignor	e 💿 Stop	Layer O T	imed Power
Control Error	- Crystal Fail -	-Crystal Quality -	-Crystal Stability -
Enabled	Contraction Enabled	Enabled	Enabled
5.00	3.00 Counts	5.00 %	,000.00 Single Hz
5.00 sec.		5.00 Counts	,000.00 Total Hz

Figure 3-14 Errors tab

Control Error: If the control loop cannot maintain the desired deposition rate (due to loss of source material, excessively high rate ramps, or equipment malfunction) a control error occurs. Control error % is the accuracy that must be exceeded for the specified time (in seconds) to trigger a control error. Use shutter delay accuracy to assure adequate process control before entering the deposition phase.

Crystal Fail: Establishes the number of bad readings (i.e., 0 Hz) from a sensor that generates a Crystal Fail condition. If a crystal fails, the PID loop will send the source supply to max power. Therefore, it is unlikely you will ever want to disable this error.

Crystal Quality: Each time the rate deviation for this film exceeds the % value, a counter is incremented. Each time the rate deviation is within the % value, the counter is decremented (to zero minimum). If the counter exceeds the Counts value during the entire layer deposition, an error occurs.

Crystal Stability: When material is being deposited, a crystal's frequency normally drops. At the end of crystal life, sensor frequency may briefly "mode hop" to higher frequencies. Single Hz is the largest single positive frequency shift allowed. Total Hz is the sum of positive shifts allowed during a film's deposition.

On Error: When an error condition occurs, three actions are possible. Ignore the error and let the PID loop attempt to maintain rate control. Stop the layer and allow the user to fix or manually control deposition. The last choice, Timed Power, uses the last good Rate/Power settings to "estimate" rate and thickness.

In Timed Power, the output is set to the power level that last yielded a rate reading within the Control Error % deviation setting (10% deviation if Control Error is disabled). The program then calculates the estimated thickness based on that rate and the deposition elapsed time. When the calculated thickness reaches thickness setpoint, deposition stops.

3.5.1.7 Analog Inputs

Normally the SQS-242 software uses SQM-242 card quartz sensor inputs to measure or control rate and thickness. The SAM-242 Analog Input Card extends this capability to allow measurement and control on DC voltage-based process variables such as temperature transmitters, pressure/flow controllers.

Analog input based control is treated, for the most part, identically to quartz sensor based control. Considerations for using an analog input are discussed below.

Layers Tab: In the Inputs dropdown, select one of the Analog inputs. In the Outputs dropdown, select the output that is to be controlled. Enter the desired setpoint. Normally this setpoint is in Volts, but can be converted to other units (e.g., degrees or PSI) in the Edit, System, Analog dialog box.

Use Time Endpoint to stop the analog layer after a set time. Otherwise, a Sensor input, programmed as a Codep layer, can control the layer endpoint. Final Thickness and Thickness Endpoint settings have no effect for an analog input.

If Continuous Start is selected the analog input controls to its programmed Layer Setpoint through all of the Ramp/Soak/Feed phases. This allows temperature or pressure control (for example) to be maintained through all phases of the layer. If Stop Layer is selected, control is still maintained at setpoint. Pressing Abort Process will set the output to zero.

Rate Ramps Tab: Setpoint ramps can also be programmed for an analog signal.

Deposition Tab: The PID and Shutter Delay controls operate the same as a Sensor input. Rate sampling is not possible for analog inputs.

Condition Tab: Conditioning is identical to that of a Sensor input.

Source/Sensor Tab: Only Max Power and Slew Rate are functional.

Errors: Only Control Error applies.

The Analog Input's measured value (converted to the defined units) and deviation from setpoint are shown below the graph. The analog input values are NOT shown on the normal Rate graph (the values could lead to poor rate resolution on the graph). Instead the analog input voltages are shown on the View, Analog graph. Volts are displayed on this graph, rather than the scaled units (again, to maintain adequate graph resolution).

3.5.2 Edit: Films

The Edit Films dialog, see Figure 3-15, allows you to rename, delete, and copy films. The functions in the tabbed control are identical to those for this film on the Edit Processes dialog.

NOTE: Edits to a Film will affect all processes and layers that use that film!

Figure 3-15 Film Edit dialog

[💐] Film Edit X Gold Sample R<u>e</u>name <u>N</u>ew Delete Сору Deposit Condition Source/Sensor Errors Loop Shutter Delay-Rate Sampling P Term Continous Enabled 1 Accuracy I Term Accuracy 10.00Based 0.0 % 5.0 Sec. % O Time Based TimeOut D Term Sample Hold 0.00 60 10 10 Sec. Sec. Sec. Sec.

Film: A dropdown box that selects the film parameters displayed in the edit film dialog box.

Rename: Edits the name of the selected film.

New: Creates a new film.

Delete: Deletes the currently selected film from the database. A film cannot be deleted if it is used in ANY process! To delete a film, you must first delete the film from each process where it is used.

Copy: Creates a duplicate of the currently selected film.

The function of each Edit Films tab, and its associated controls, are identical to those detailed in the Edit Processes section. Please consult section 3.5.1 on page 3-8 for that information.

3.5.3 Edit: Materials

The Edit Material dialog, see Figure 3-16, provides the functions needed to build a materials database. In addition to the functions listed below, the main dialog box SoftKeys provide capabilities to add/edit/delete materials.

🖥 Material			×
R <u>e</u> name	New	Delețe	
Material Gold	De gr	nsity Z Facto 19.30 0.38 1/cc	1

Figure 3-16 Material dialog

Rename: Edits the name of the selected material.

New: Creates a new material.

Delete: Deletes the currently selected material from the database. A material cannot be deleted if it is used in ANY process! To delete a material, you must first delete each film where it is used.

Material: Selects a material to edit.

Density: Sets the density for this material. Material density has a significant impact on deposition calculations.

Z-Factor: Sets the Z-Ratio, a measure of a material's effect on quartz crystal frequency change. Z-Ratio has no effect on measurements when using a new crystal. If the Z-Ratio for your material is not known, using crystals with >80% life will eliminate the effect of the Z-Ratio term.

3.5.4 Edit: System

The System Setup dialog, Figure 3-17, configures the SQS-242 software to the physical setup of your deposition system. Several settings that control the overall operation of the program are also accessed in System Setup.

The combination of sensor input and control output assignments, known as a System Setup, are stored in the SQS-242 database. Most systems will have a single setup that applies to all processes. However, complex systems may use several different system setups within a single process.

NOTE: Settings on the Outputs, Sensors, Analog, and Cards tabs are unique for each System Setup. Settings on the Indexers, I/O, and Comm tabs apply to all System Setups. Output colors are also common to all setups.

Figure 3-17	System 3	Setup dialog
-------------	----------	--------------

System Setup	Rename	<u>N</u> ew D	ele <u>t</u> e <u>C</u> opy
Outputs Sensors A	nalog Inde <u>x</u> e Physical	rs <u>I</u> /O <u>C</u> ards (Co <u>m</u> m
1 Output 1	Output #	5.00	Test Output
2 Output 2	2 🔹	5.00	
3 Output 3	3 •	10.00	Zero
Output 4 Output 5	4 •	-10.00	
6 Output 6	14 •	-10.00	

Controls along the top of the System Setup dialog box apply to the selected system setup:

System Setup: A dropdown box that selects the setup to be edited. Defaults to the current setup.

Rename: Edits the name of the selected setup.

New: Creates a new system setup, based on the existing default setup.

Delete: Deletes the currently selected setup from the database. If the setup is used in a process, an error message is displayed.

Copy: Creates a duplicate of the currently selected system setup.

3.5.4.1 Outputs Tab

Figure 3-18 Outputs tab

🖥 System Setup			×
Chamber1 -	R <u>e</u> name	<u>N</u> ew D	ele <u>t</u> e <u>C</u> opy
<u>O</u> utputs <u>S</u> ensors <u>A</u> n	alog Inde <u>x</u> e	ers <u>I</u> /O <u>C</u> ards	Co <u>m</u> m
Name	Physical Output #	FS Out Color	
1 Output 1	1 🔹	5.00	Test Output
2 Output 2	2 🔹	5.00	
3 Output 3	3 🔹	10.00	
4 Output 4	4 -	10.00	
5 Output 5	13 •	-10.00	
6 Output 6	14 •	-10.00	

Name: Assigns a name to each displayed output. For clear display, keep the name to less than 8 characters.

Physical Output: Up to six SQM-242 cards (physical outputs 1 to 12) and a single SAM-242 card (physical outputs 13 and 14) may be installed in a computer. However, the SQS-242 software can display and control a maximum of 6 outputs simultaneously. Use this dropdown to assign a "physical" output to a "display" output.

FS Out: The input voltage required by the deposition source power supply to produce 100% output power. Positive or negative full scale values are possible.

Color: Selects the color used to graph and display output data.

Test Output: Useful for testing output wiring and Full Scale voltage settings. Select an output, then click Full Scale to set the SQM-242 card output to its Full Scale voltage. Click Zero to return the selected output to 0 volts.

3.5.4.2 Sensors Tab

Figure 3-19 Sensors tab

Default	m Setup •	R <u>e</u> name	<u>N</u> ew Dele	te <u>C</u> opy
<u>O</u> utpu	ts <u>S</u> ensors <u>A</u> n	alog Inde <u>x</u> ers	<u> </u> /O <u>C</u> ard Co <u>m</u>	im]
	Name	Physical Sensor# D	Monitor Jual Output	Control Rate Thk
1	Sensor 1	1 .	Output 1 💌	
2	Sensor 2	2 -	Output 1 -	
3	Sensor 3	3 •	Output 2 -	
4	Sensor 4	4 •	Output 2 -	
5	Sensor 5	5 .	Output 3 -	~ ~
6	Sensor 6	6 •	Output 3 -	
7	Sensor 7	None -	None -	
8	Sensor 8	None •	None -	

Name: A meaningful name assigned to each sensor. For clear display, keep the name to less than 8 characters.

Physical Sensor: Up to six SQM-242 cards (physical sensors 1 to 24) may be installed in a computer. However, the SQS-242 software can display a maximum of 8 sensors simultaneously. Use this dropdown to assign a "physical" sensor to a "display" sensor.

Dual: Indicates that a pair of sensors is set up as primary/secondary duals. When a primary sensor fails, the SQS-242 switches to the secondary sensor.

Monitor Output: Select the output that each sensor is positioned to measure. The rate and thickness displayed by the sensor will be calculated based on the material assigned to the selected output.

Control Checkboxes: Click Rate to assign the sensor to the PID rate control loop for the assigned output during deposition. Click Thk to use the sensor for Thickness endpoint detection. Typically you will check both boxes so that the sensor controls to rate setpoint and detects the thickness endpoint. If multiple sensors are assigned to control the same output, the sensor readings are averaged when calculating rate and thickness.

Uncheck both boxes to have a sensor monitor an output, without controlling deposition rate or stopping when final thickness is reached.

3.5.4.3 Analog Tab

Figure 3-20 Analog tab

Syster	em Setup ver1 🔹	Rename	New Del	ete Copy
) Outpu	its <u>S</u> ensors <u>A</u> r	alog Inde <u>x</u> ers <u>i</u>	/0 <u>C</u> ards Co	2 <u>m</u> m
1	Name Analog 1	Gain	Offset	Units Volts
2	Analog 2	1.00	0.00	Volts
3	Analog 3	1.00	0.00	Volts
4	Analog 4	1.00	0.00	Volts
	Convert DC Volts t	o your units using: \	/olts x Gain + Of	fset = Units

The SAM-242 analog input card measures DC voltages in the +/-10 volt range. These voltages may represent temperature, flow, or any other process variable. The analog tab allows you to modify the display to show values in the desired units, using a linear (y = mx + b) transformation.

For example, assume you have a temperature transmitter that sends 0V at 0°C and 1V at 100°C. To display temperature in °F, set the Gain to 180, Offset to 32, and Units to DegF. The SQM-242 will display setpoints and measurements associated with the analog input in degrees F.

To leave the analog input display in Volts, set Gain = 1 and Offset = 0.

Name: A meaningful name assigned to each analog input. For clear display, keep the name to less than 8 characters.

Gain: The gain term for transforming voltage to measured units. This is the m term in y = mx + b.

Offset: The offset term for transforming voltage to measured units. This is the b term in y = mx + b.

Units: The units that you wish to display for the analog input.

3.5.4.4 Indexers Tab

Figure 3-21 Indexers tab

🖥 System Setup		×
Default	- R <u>e</u> nam	e <u>N</u> ew Delete <u>C</u> opy
Outputs Sensors	<u>Analog</u> Ind	lexers I/O Card Comm
-Source Indexers		Layer Indexers
Complete Signal	Timeout (sec.)	Complete Timeout Signal (sec.)
1 🔽	30	Substrate 🔽 30
2 🔽	30	User1 30
3 🗖	30	User2 🔲 30
4 🗖	30	
5 🗖	30	Source1
6	30	Move

Source Indexers: A unique source indexer (pocket rotator) is available for each output used. The source indexer moves at the beginning of each layer.

Layer Indexers: Three "layer indexers" are also available. Layer indexers also move at the beginning of each layer. Layer indexer values are useful for control of substrate indexers or other external process equipment.

NOTE: The Layer Indexer names, the range of values, and the first entry can be customized by editing entries in the SQS242.INI file (see section 3.8).

Complete Signal: Check this box if your indexer sends a signal indicating that the move is complete.

Timeout: If Complete Signal is checked, the process will halt if a move complete signal is not received within this timeout period. If Complete Signal is not checked, the process waits for this fixed time period before starting a layer.

Move: Useful for testing indexer functions manually. Select an indexer, then an index (pocket). Click Move to move to the selected index. Layer indexers are typically named Substrate, User 1, and User 2. Layer indexer names can be edited in the SQS242.INI file (see section 3.8).

3.5.4.5 I/O Tab

A PLC must be used to provide digital I/O capabilities. The I/O tab assigns deposition events (i.e., open shutter, start deposit, final thickness, etc.) to the physical relays and inputs on the PLC.

NOTE: Omron CPM series PLCs number relays from 10.00 to 10.07, then 11.00 to 11.07. These correspond to Relays 1 to 16 on the I/O tab. Similarly, inputs 0.00 to 0.11 on the Omron PLC correspond to inputs 1 to 12 on this dialog box. See Figure 3-22.

Figure	3-22	I/O tab	
--------	------	---------	--

System Setup Chamber1 Rename	New Delete Copy
Outputs Sensors Analog Indexers Relay Events Process Bunning	I/O Cards Comm
 Relay 1 Relay 2 Relay 2 Relay 3 Relay 3 Relay 11 Relay 4 Relay 12 Relay 5 Relay 13 Relay 6 Relay 14 	Input 1 Input 7 Input 2 Input 8 Input 3 Input 9 Input 4 Input 10 Input 5 Input 11 Input 6 Input 12
C Relay 7 C Relay 15 C Relay 8 C Relay 16 Test Set Clear Clear All	Comm Port Address Comm 2 • 0 9600,E,7,2 CPM1/2

Relay Events: The relay events dropdown box lists the deposition events that can cause a relay output to be activated. To assign a deposition event to a relay, click the Relay #, then select the desired event from the dropdown box. As you click each Relay#, the dropdown will change to show its currently assigned event. A description of each relay (output) event follows:

Source Shutter 1 to 6

These relays control the Shutter that covers your deposition source. At the beginning of the deposit phase the relay will close its contacts. When the deposit phase finishes the shutter relay contacts open.

Sensor Relays 1 to 8

These relays control sensor shutters. Their function depends on whether you have single or dual sensors.

If Dual Sensor is not selected (i.e., a single sensor), the relay contacts close when Shutter Delay phase is entered on a layer with the sensor enabled. As an example, let's say you have sensors 1 and 3 enabled for Film 1 and sensors 2 and 4 enabled for Film 2. When you start Film 1 Shutter Delay phase, the contacts for Sensor Relays 1 and 3 will close. When you start Film 2, these contacts open and the contacts for Sensor Relays 2 and 4 will close when Shutter Delay is entered. If the software is configured for dual sensors, the relay operation is considerably different. Dual sensors use pairs of sensors (i.e., Sensor 1 and 2, or Sensor 3 and 4). With Sensors 1 or 3 selected, the associated relay contacts are open. If a Crystal Fail is detected, the relay contacts for the failed sensor will close to select the second sensor in the Dual Sensor assembly for the duration of the film.

Xtal All Good and Xtal All Fail Relays

These two relays provide an indication of the general health of your sensors. If the Xtal All Good Relay is closed, then all enabled sensors are returning a valid reading. If the Xtal All Fail Relay is closed, none of the enabled sensors are returning a valid reading.

Process Stopped and Running Relays

These relays indicate the overall status of the process. The Process Running relay closes as soon as Start Process is selected (by front panel or digital input), and opens when Abort Process is selected. Even if a layer is stopped within a process, the Process Running relay remains closed until the last film of a process has finished. The Process Stopped relay contacts behave in the inverse manner.

Layer Stopped and Running Relays

The Layer Running relay closes as soon as Start Layer is selected (by front panel or digital input), and opens when Stop Process is selected. The Layer Stopped relay contacts behave in the inverse manner.

Deposit Phase Relay

This relay indicates that you are in the deposit phase of a film. It is like having the two Source Shutter Relays connected in parallel. If you have shutter delay enabled, this relay will wait until the end of the shutter delay before going active.

Pre-Cond Phase Relay

This relay closes for the preconditioning phases (Ramp1, Soak1, Ramp2, Soak2) of a film.

Soak Hold Phase Relay

This relay closes for the Soak and Hold phases after deposition.

Process Active Relay

This relay action is similar to the Process Running relay, except it will open if the process is temporarily halted for any reason, e.g. a Manual Start layer.

Manual Mode Relay

Closes when the program is placed in Manual mode.

Max Power Relay

Closes when any control voltage output is at the programmed maximum power level.

Thickness Setpoint Relay

This relay will become active when the Thickness Setpoint is reached. This is a programmable process parameter.

Time Setpoint Relay

This relay will become active when the Time Setpoint has been reached. This is measured from the beginning of the deposit phase, and is a programmable parameter.

Test: The Test section provides a simple means of testing I/O wiring. To close a relay, select the desired relay button, then click Set. Click Clear to open the relay contacts.

Input Events: The input events dropdown box lists the deposition events that can be caused by an external digital input. To assign a deposition event to an input, click the Input #, then select the desired event from the dropdown box. As you click each Input #, the dropdown will change to show its currently assigned event. A brief description of each input event follows:

Start Process Input

Triggering this input is the same as pushing the Start Process button.

Abort Process Input

Triggering this input will abort the process.

Start Layer Input

Triggering this input will start or restart the current layer.

Stop Layer Input

Triggering this input will stop the current layer.

Start Next Layer Input

Triggering this input will skip the current layer and start the next layer.

Zero Thickness Input

This will zero the thickness. It is identical to pressing the Zero button.

Force Final Thickness Input

Triggering this input has the same effect as reaching Final Thickness setpoint.

Comm Port: Selects the serial port used to communicate with the PLC. The Comm Port dropdown lists available ports. However, some ports may be used by other devices (modem, mouse, etc.). Select Disabled to prevent I/O from using the PLC.

The communications parameters (baud, parity, bits, stop) are shown below the Comm Port dropdown. The baud rate can be changed in the SQS242.INI file (see section 3.8).

Address: Several PLCs can be controlled from a single computer Comm Port by connecting their expansion ports. The slave address of each such PLC is usually set by a rotary or dip switch, and must be unique. Single PLC systems usually use Address 0. Consult your PLC User Manual.

If the PLC is found at the selected Comm Port and Address, the COMM LED on the PLC will flash continuously. The PLC model is displayed below the address.

3.5.4.6 Card Tab

🖥 System Setup		×
Default -	R <u>e</u> name <u>N</u> ew	Dele <u>t</u> e <u>C</u> opy
Outputs Sensors An	alog Inde <u>x</u> ers <u>I</u> /O	Card Comm
Cards	· ·	Display
 Simulate 	Period	Filter Last Output
🔿 Normal	Sec.	3 4 🗸
Card 1 Rev: 2.01	May Fred	Rdgs. Displayed
Card 2 Rev: 0.00		
Card 3 Rev: 0.00	6.100000	Graph
Card 4 Rev: 0.00	Hz	Continuous
Card 5 Rev: 0.00	Init. Freq	X Avia Width
Card 6 Rev: 0.00	6.000000	
Analog Rev: 2.01	Hz	
DLL Return: 0.00	Min. Freq	Y Axis Height
Front Panel Enabled	5.000000 Hz	

Figure 3-23 Card tab

Mode: In Normal mode, the SQS-242 gets readings from the SQM-242 card(s). In Simulate mode, the SQS-242 generates simulated readings even if a card is not installed. This is useful for testing new processes and learning the software.

The firmware revisions of the installed SQM-242 cards are listed below the mode buttons. A value of 0 indicates the card is not installed. Analog Rev refers to the revision of an SAM-242,card if installed. DLL Return is the status of the SQM-242 card's Windows drivers. DLL return values of 9XX indicate a card installation error.

Front Panel Enabled: When used with the SRC series computer, enables/disables the SQS-242 software to read the SoftKeys.

Period: Sets the measurement period between 0.2 seconds (5 readings per second) and 2 seconds. A longer period gives higher reading accuracy, especially at low rates.

Max/Init/Min Frequency: The frequency values for the quartz crystal sensors used as inputs to the SQM-242. Typical values are Max=6.1, Init=6.0, Min=5.0. Sensor readings outside the min/max values cause a Sensor Fail error.

Filter: Sets the number of readings used in the reading filter. A low setting gives rapid response to process changes, high settings give smoother graphs.

Last Output: Limits the maximum number of outputs shown on the main dialog box.

Continuous: Check this box to have the graph continuously display data for each phase of the deposition cycle. Uncheck this box to clear the graph at the end of the preconditioning, deposition, and post conditioning phases.

Graph X Axis: Sets the width of the X axis during deposition, normally 100 seconds. Whatever width is selected, the graph automatically scrolls the X axis as required. Due to screen resolution, setting a width of more than 10 minutes (600 seconds) may cause some data points to not be plotted.

Graph Y Axis: Sets the Y axis Rate graph maximum value during deposition. Setting the value to 0 causes the Y axis to automatically scale to the highest rate displayed.

3.5.4.7 Comm Tab

The SQS-242 software can be controlled by another computer through an RS-232 or Ethernet connection. See section 5.2 on page 5-1 for more details.

System Setup	ame <u>N</u> ew	Dele <u>t</u> e <u>C</u> opy
Outputs Sensors Analog I	Indexers I/O Card	s Co <u>m</u> m
RS-232 Port Disabled Baud Rate 9600	Ethernet Local Port -1 Name GARY IP Address 90.0.0.128	Remote Port
Monitor Receive Data Transmit Data		

Figure 3-24 Comm tab

RS-232 Port: Selects the comm port used for serial communications with another computer. The Comm Port dropdown box lists available ports.

Baud Rate: Sets the baud rate used for serial communications.

Ethernet Ports: Local Port sets the TCP/IP port used by the SQS-242 software for Ethernet communications (1001 is a typical value, -1 for no Ethernet). When communications is established, Remote Port displays the TCP/IP port of the remote computer communicating with the SQS-242 software.

Ethernet Name: Displays the name of the local and remote computers, as set in their Windows, My Computer dialog box.

Ethernet IP Address: Displays the IP address (xxx.xxx.xxx) of the local and remote computers.

Receive Data: Displays the Query and Update requests received from the Comm and Ethernet port. See section 5.6 on page 5-2 for a description of the serial communications protocol.

Transmit Data: Displays the response to Query and Update requests received from the Comm and Ethernet port.

NOTE: The Comm tab does not monitor communications with the PLC.

3.5.5 Edit: Security

The Security menu assigns Users, their Password, and their Access Level. It also provides a flexible way to assign program functions to different Access Levels.

NOTE: The Security dialog box is available only to users with Supervisor Access.

3.5.5.1 Users Tab

Eiguro 2 25 Lloora tab

Security	×
Osers Access	
User:	Super .
Access:	Supervisor 🔹
Password:	

User: Dropdown box used to select an existing user, to edit their Access or Password. It is not possible to edit or add a user name in the User dropdown. Use the New SoftKey to create a new User. Use the Delete SoftKey to delete the selected user.

Access: Assigns a program access level to the selected user. Generally speaking, Supervisor (SUPV) provides access to all program functions. Technicians (TECH) have access to a subset of functions. While User level access (USER) has access to only those functions needed to run deposition processes. See the Access Tab section to assign SUPV, TECH, and USER program capabilities.

Password: Each user will typically have their own password. When a password is entered, a second box will appear for password confirmation. If the Password box is left blank, no Password is needed for that user to login.

3.5.5.2 Access Tab

The Access tab allows Supervisors to assign which program functions are available to each of the three Access Levels. When a program function is assigned to a particular access level, it is automatically available to higher access levels.

In Figure 3-26, every user has access to the File Process menu and the File Exit menu. Only Supervisors have access to the Edit System and Edit Security menus. The remaining menus are assigned TECH access. They will be available to TECH and SUPV users, but not to USER access users.

The settings along the right side of the Main Form can be viewed by any user, but values can only be edited by TECH or higher access.

Those who login with USER access can select and run processes, but they cannot edit process parameters. TECHs can also select and run processes (because those functions are assigned to a lower level access). However, TECHs can also edit process parameters. Only Supervisors can change System Setup or Security assignments.

NOTE: User names and passwords are limited to A-Z, 0-9, _, -, and space. Passwords are a maximum of 8 characters.

Figure 3-26 Access tab

Security	X
Users Access	
File Menu Process USER •	Edit Menu Process TECH -
Open / TECH •	Film TECH -
DataLog TECH -	Material TECH -
Print TECH -	System SUPV -
Exit TECH -	Security SUPV
Main Form	
Settings TECH -	

3.6 View Menu

The View menu controls the appearance of the main display.

Film Settings: Displays/hides a ribbon of commonly accessed process settings along the right of the dialog box. Additional process parameters are available in the Edit menu. When displayed, the settings ribbon allows the user to easily modify process settings during deposition without leaving the main dialog box. Changes are made to the current process and the process database immediately. In CoDeposition, first click on the desired film to display its parameters.

Film Readings: Displays/hides film deposition readings along the bottom of the dialog box. Readouts of Film, Rate, Deviation, Thickness, and Power are displayed simultaneously for each of the active outputs. The rate, deviation, and thickness readings displayed represent an average of the quartz sensors assigned to each film.

Sensor Readings: Displays/hides a pop-up window of sensor rate, thickness, remaining life, and frequency readings. Unlike the main dialog box's Film Readings, this display is the raw data coming from each sensor. In addition, the output (i.e., PID control loop) that each sensor is assigned to is displayed. Sensor assignments are established on the Sensor tab of System dialog box.

A (P) in the Control column indicates the sensor is the primary sensor of a dual sensor pair. (S) indicates a secondary sensor. An (R) in the Control column indicates that the sensor is being used only for rate control. A (T) indicates the sensor is used only for Final Thickness endpoint detection. An (M) indicates the sensor is being used to monitor, but not control, the output. These options are selected on the Sensor tab of System dialog box

NOTE: The Sensor Readings dialog box can be sized to also show SAM-242 card analog input readings and digital I/O information. The digital I/O information is useful for troubleshooting I/O problems during setup.

Rate Graph: Fixes the main graph to deposition rate. Deposition rate is useful during the shutter delay, rate ramp, and deposition phases. During other phases, the power output graph is usually more useful.

Deviation Graph: Fixes the main graph to display percent deviation from the rate setpoint. Rate deviation is useful for fine tuning the PID control loop.

Power Graph: Fixes the main graph to output power. Output power is directly adjusted during the PreConditioning, feed, and hold phases. Output power is also useful during the deposition phases to detect error conditions, which cause oscillations. Be sure the Full Scale voltage is set properly in the SQM-242 Setup menu.

Sensors Graph: Normally the graph displays output, or film-based information. The Sensors Graph selection displays the rate readings from each individual sensor assigned to a system setup. It is a graphical display of the Rate column of the Sensor Readings dialog box.

Analog Graph: If an SAM-242 analog input card is installed, this graph shows the voltage readings from each analog input assigned to a system setup.

Automatic: Changes the main graph to display the most pertinent information for each deposition phase. During preconditioning, output power is displayed. During shutter delay, rate ramps, and deposition, the main graph displays deposition rate. During feed and hold phases, the graph reverts to output power.

NOTE: To alter the appearance of a graph, right-click anywhere on the graph. Use the Graph Property Page dialog box to alter the graph to your preferences. To permanently save the changes, click the Control tab, the General tab, then the Save button. Save the graph setup to the appropriate .OC2 file for the graph you are modifying.

High Resolution: When this option is checked, rate is displayed to 0.01 Å/s, and thickness to 0.1kÅ. This can be useful for low rate applications, but annoying for moderate rates. The SQM-242 card resolution for PID control is unchanged.

3.7 Software Specifications

Display

Graphs Rate, Deviation, Power Readouts Rate, Dev, Thick, Power <u>Process Parameters</u>

Name 12 characters

SQS-242 Operating Manual

# Processes	Unlimited
# Layers	Unlimited
# Films	Unlimited
# Rate Ramps	Unlimited
# Sensors (Dual)	1 to 8 (4 Dual)
# Sources	1 to 6
Layer Parameters	
Film	Any defined
Output	1 to 6
Input	Sensor(s) Timed Power Analog Input
SetPoint	0.00 to 999.99 Å/s 0.00 to 100.00% Power 0.00 to10.00 V(dc)
Final Thickness	0.0 to 999.9 kÅ
Time EndPoint	0 to 30000 s
Thickness EndPoint	0.0 to 999.9 kÅ
Start Mode	Auto/Manual
Source Indexers	6, Index 1-16
Layer Indexers	3, Index 1-16
Rate Ramp Start	0.0 to 999.9 kÅ
Rate Ramp Time	0 to 1000 s
New Rate	0.00 to 999.99 Å/s
Film Parameters	
Name	12 characters
Ramp Time (1,2)	0 to 30000 s
Soak Power (1,2)	0.0 to 100.0%
Soak Time (1,2)	0 to 30000 s
Shutter Delay Time	0 to 200 s
Shutter Delay Error	0.0 to 30.0%
P Term	1 to 9999

I Term 0 t	o 999.9 s
D Term0 t	o 99.9 s
Control Error Igr	nore/Stop/Hold
Control Error Set0 t	o 30.0%
Feed Ramp Time 0 t	o 30000 s
Feed Power 0.0) to 100.0%
Feed Time0 t	o 30000 s
Idle Ramp Time0 t	o 30000 s
Idle Power 0.0) to 100.0%
Tooling (Sensor 1 to 8) 10	.0 to 999.0
Max Power 0.0) to 100.0%
Slew Rate 0.0	0 to 100.0%/s
Source Index (Pocket) 0 t	o 15
Material Parameters	
Name 12	characters
Density0.	40 to 99.99 gm/cm ³
Z-Factor0.1	100 to 9.900
Digital Inputs (available only with PL	<u>C option)</u>
Start Process	
Stop Process	
Start Layer	
Stop Layer	
Start Next Layer	
Zero Thickness	
Force Final Thickness	
Substrate Index Complete	
Source Index Complete	
Relay Outputs (available only with PL	<u>.C option)</u>
Source Shutter 1 t	o 6
Sensor Shutter 1 t	o 8

Sensor Shutter	1 to 8
All Crystal Fail	

- All Crystal Good
- Process Running
- Process Stopped
- **Process Active**
- Deposit Phase
- **Pre-Cond Phase**
- Feed/Idle Phase
- Manual Mode
- Max Power
- Thickness Setpoint
- Time Setpoint
- **Final Thickness**
- Substrate Index Select 0 to 15
- Source Index (Pocket) Select. 0 to 15

Security

- User Name 16 characters
- Password 8 characters

Computer Interface

Type RS-232, Ethernet, ActiveX

3.8 INI File Parameters

Parameters that control operation of the SQS-242 program are stored in the SQS242.INI file. Most of these are easily altered within the program and updated automatically.

However, a few of the parameters cannot be changed within the program. Use a text editor to alter the parameters listed below.

CAUTION

Always make a backup of the INI file before editing!

MDISize = Left, Top, Width, Height (Screen size and location (in pixels))				
Debug = True or False (Show SQM-242 card error messages)				
Show = True or False (Tr	rue loops continuously through a process)			
KillErrLog = True or Fals	e (True clears error log each time application)			
NumberFormat = 0 or 1	(0 uses Windows setting for number format) (1 uses the U.S. format (i.e., 1,000.00))			
BackColor = Color (Defa	ult is BLACK)			
ForeColor = Color (Defa	ult is LIGHTGRAY)			
HighLightColor = Color	(Default is WHITE)			
The next four parameters control setup of the 4 indexer values where:				
Name is the Indexer label on the Process form				
Start is the first index number, typically 0 or 1				
End is the last index number, typically 15 or 16				
First is the text displayed for the Start index number				
SourceIndex = Name, Start, End, First				
LayerIndex1= Name, Start, End, First				
LayerIndex2= Name, Start, End, First				

LayerIndex3= Name, Start, End, First

This page is intentionally blank.

Chapter 4 Digital I/O

4.1 Introduction

Digital I/O for the SQS-242 software can be handled by an inexpensive PLC. This section will cover interfacing a Omron CPM2 series PLC to the SQS-242 card and PC. It is not necessary, however, to use external I/O with the SQS-242 software.

There are several benefits to using an external PLC for I/O. First, noisy high voltage wiring can be placed near the control sources, rather than routed into the controller's equipment rack. Only a single serial cable runs from the PLC to the controller. The PLC also provides electrical isolation for the process controller. And finally, the PLC's ladder logic programming provides fail-safe process protection and allows I/O to be easily tailored to each end user's installation.

4.2 PLC Installation

The Omron PLC uses a special RS-232 cable as shown in Figure 4-1. Do not use a standard serial cable. Damage to the PC or the PLC could result.

SID-142 \$	Serial Po	rt	PLC	Port
Signal	Pin No.		Pin No.	Signal
CD	1		1/Cover	FG
RD	2		2	SD
SD	3		3	RD
ER	4		4	RS
SG	5		5	CS
DR	6		6	anteri
RS	7		7	2
CS	8		8	2020
CI	9		9	SG

Figure 4-1 Omron PLC RS-232 Cable

Mount the PLC controller near the devices it is controlling and sensing. Connect the PLC to a properly grounded power source. See the PLC User Manual for detailed PLC mounting and connection information. Connect the serial cable supplied from the PLC serial port to your computer serial port.

Input Wiring: The 0.0 to 0.11 inputs on Omron PLCs correspond to Inputs 1 to 12 in the SQS-242 software. Omron PLC input wiring is shown in Figure 4-2.

Figure 4-2 Omron PLC Input Wiring

Output Wiring: The PLC output relays are mapped to output events using the SQS-242 software's Edit, System dialog, I/O Events tab.

NOTE: Relays 1 to 8 in the SQS-242 software correspond to relays 10.00 to 10.07 on the PLC. Relays 9 to 12 correspond to Omron relays 11.00 to 11.03.

Figure 4-3 Omron PLC Output Wiring

Omron PLC output wiring is illustrated in Figure 4-3. Notice that some relays (i.e., 02/03 and 04/05/06/07) share a common terminal.

NOTE: The internal 24 V (dc), .3 A supply of the Omron PLC is NOT adequate to serve as the supply shown in the diagram above.

Indexer I/O: Indexers from different manufacturers use a variety of pocket decoding schemes. The PLC monitor program adapts information from the SQS-242 program to a specific indexer. The two most common indexer decoding schemes are illustrated below.

Binary Pocket Select: Each pocket requires a dedicated relay. That is 8 pockets require 8 relays. The CPM2A-Basic PLC monitor program assigns relays 11.00 to 11.03 to operate a 4 pocket indexer of this type.

Binary Coded Pocket Select: Pockets are selected by a value that is the binary representation of the pocket. That way fewer relays are required. For example, 16 pockets can be selected with only four relays. The CPM2A-BCD monitor program assigns relays 11.00 to 11.03 to this function.

Please contact INFICON for information on your indexer.

Other Digital I/O: Depending on the PLC model used, additional relay and input pins are available for other functions (i.e., source indexer operation). Please contact INFICON.

4.3 PLC Setup and Test

In the SQS-242 software select Edit, System, then the I/O tab. Set the Address to match the PLC Address (usually 0). Set the Comm Port to the serial port you are using. The COMM LED on the PLC should flash several times a second when the Address and Comm Port are set properly.

The Test section of the I/O tab provides a means of testing your PLC communications and digital I/O wiring. To set a relay on the PLC, go to the Digital I/O tab and find which I/O event is assigned to that relay. On the PLC tab, select the same event in the test dropdown, then click Set. The assigned Relay# should close. Click Clear to open the relay.

The Indexers tab of the Edit System dialog box allows you to move a source or substrate indexer. Select the index (i.e., pocket) to activate, then click the appropriate move button.

4.4 5.3 PLC Programming

The PLC runs a small ladder logic program that communicates with the SQS-242 software. This program transfers external relay and input states from the PLC connecting block to internal PLC registers. The SQS-242 software reads/writes to those registers.

The preset functions of the SQS-242 software will be adequate for most applications. If you need to perform additional logic functions, they can be programmed using Omron's CX-Programmer software. Contact INFICON for more information on programming your PLC.

The functions of the internal PLC registers used by the standard SQS-242 program are shown below.

PLC Register SQS-242 Function

200	Layer/Phas	se Register			
	Bits 0-	-9 are BCD layer numbe	er runn	ing	
	Bits 10	0-15 are BCD Phase# a	s shov	vn below	
	00 Application Startup 09 ShutterDelay Phas				
	01	Program Initializing	10	Deposit Phase	
	02	Not Used	11	Layer Stopped	
	03	Not Used	12	Layer Starting	
	04	Process Stopped	13	Not Used	
	05	Ramp1 Phase	14	Feed Ramp Phase	
	06	Soak1 Phase	15	Feed Hold Phase	
	07	Ramp2 Phase	16	Idle Ramp Phase	
	08	Soak2 Phase	17	Idle Phase	
			18	Continuous Phase	
201	Sensors/O	utputs 1-4 Register (upd	lated e	each laver)	

20 I

ils 1-4 Regislei (upualeu e Bits 0-7 are sensors used (1=used, 0=unused) Bits 12-15 are outputs used, 12 is Out1, 13 is Out2, etc.

202	Analog/Outputs 5-6 Register (updated each layer) Bits 0-3 are analog inputs used (1=used, 0=unused) Bits 4-5 outputs used, 4 is Out5, 5 is Out6 Bits 8-11 are BCD of Output source index Bits 12-15 are BCD of Output 6 source index
220	Source Index Register (updated each layer) Bits 0-3 are BCD of Output 1 source index Bits 4-7 are BCD of Output 2 source index Bits 8-11 are BCD of Output 3 source index Bits 12-15 are BCD of Output 4 source index
221	Source Indexer Done Flag Bit 0 is Source Indexer 1 (1= Indexer Done, 0=Not Done) Bit 1 is Source Indexer 2 Bit 2 is Source Indexer 3 Bit 3 is Source Indexer 4 Bit 4 is Source Indexer 5 Bit 6 is Source Indexer 6
222	Relays 1-16 Bit 0 is Relay 1, etc.
224	Inputs 1-12 Bit 0 is Input 1, etc.
225	Layer Index Register Bits 0-3 are BCD of Layer Indexer 1 Bits 4-7 are BCD of Layer Indexer 2 Bits 8-15 are BCD of Layer Indexer 3
226	Layer Indexer Done Flag Bit 0 is Layer Indexer 1 (1= Indexer Done, 0=Not Done) Bit 1 is Layer Indexer 2 Bit 2 is Layer Indexer 3

This page is intentionally blank.
Chapter 5 Communications

5.1 Introduction

The computer interface capabilities of the SQS-242 program allow operation from an external computer via Ethernet or RS-232 serial communications and a simple ASCII command set. Programs running on the same computer, can also control the SQS-242 program using ActiveX[®] and the same ASCII command set.

Parameters may be read (Query commands) while the process is running, but can only be changed (Update commands) while the process is stopped. Changes to the "structure" of a process (e.g., add or delete layers) are not allowed from the computer interface.

5.2 Serial Interface

Connect a serial cable from the serial port of the computer the SQM card is installed on to another computer's serial port. The cable required is a DB9 female to female with pins 2 and 3 crossed, commonly referred to as a null modem cable.

In the SQS-242 program select the Edit, System menu, then the Comm tab. Set the Comm Port to match the serial port the cable is connected to on the other computer. Set the baud rate to match between the host computer and the remote computer. Communications format is No Parity, 8 bits, 1 stop bit.

5.3 Ethernet Interface

Connect a cable from the Ethernet card to your Ethernet network. In the SQS-242 program select the Edit, System menu, then the Comm tab. Set the Ethernet Port to 1001, and the Ethernet name to the Network name, or IP Address of the computer you wish to communicate with. Enter a -1 for the Ethernet Port to disable the Ethernet functions.

5.4 ActiveX (COM) Interface

Any program that supports Microsoft's COM (ActiveX) interface (i.e., LabVIEW[®], etc.) can communicate with the SQS-242 program. A small ActiveX interface program, SQS242X.EXE, provides receive data and transmit data entry points to the global cComm242 class. Contact INFICON for examples in other languages, and detailed technical information.

5.5 SQS-242 Comm Program

SQS-242 Comm, found on the SQS-242 CD-ROM, is a simple Windows program to demonstrate SQS-242 communications concepts. With SQS-242 Comm you can easily send commands to, and read the responses returned by the SQS-242 program.

5.5.1 Setup for RS-232 or Ethernet

In the SQS-242 program, select Edit, System and set the RS-232 or Ethernet settings as detailed in the previous sections.

Load the Comm program on a computer (the host), and connect an Ethernet or RS-232 cable between the host and the computer running the SQS-242 program. Start the Comm program on the host computer, then select the Utility tab. Set the Comm Port and Baud Rate for the host computer, or select Ethernet and set the Ethernet Port (typically 1001).

5.5.2 Setup for Active X Control

Load the Comm program on the same computer that is running the SQS-242 program. Start the Comm program, then select Active X on the Utility tab. Start the SQS-242 program but minimize it, or bring the Comm program to the foreground.

5.5.3 Communicating with the SQS-242 Program

In the Comm program, Utility tab, click the Version button under the SID-242 Controller heading. Click Send to send the query to the computer running the SQS-242 program.

The response from the SQS-242 program should show in the Comm program Response window. A typical response is @QU;ACK;3.2.9;32, which indicates software version 3.29. The next section describes the Query/Update and Response strings in detail.

The transmissions to and from the Comm program will also show in the SQS-242 Edit, System, Comm, Receive Data and Transmit Data windows.

5.6 Protocol

SQS-242 commands fall into two categories:

- Query commands request data from the SQS-242 program.
- Update commands update a setting or instruct the program to take an action.

The SQS-242 responds to both Query and Update commands with a response that indicates the results of the command request. The SQS-242 program never initiates communications. It only responds to commands from the host.

5.6.1 Query Command Format

@<command>;<param1>;...;<paramn>;<Chksum><CR>

5.6.1.1 Example: Software Version Query

@QU;11;44 <cr></cr>				
where:				
g	Message start character			
;	Separator			
QU	Query Utility command			
;	Separator			
11	Parameter 11 (SQS-242 Software Version)			
;	Separator			
44	Checksum (see section that follows on checksums)			
<cr></cr>	Carriage Return (ASCII 13)			

5.6.1.2 Example: Response to Software Version Query

@QU; <acq>;2.1.6;??<cr></cr></acq>		(Response	to	Software	Version	query)
where:						
@;QU; <acq>;</acq>	Query Acknowledge	ed (ASCII	06)			
2.1.6	Message (Software	e Version)				
;	Separator					
0C	Checksum (actual	checksum	var	ies with	differen	t
		versions)				
<cr></cr>	Carriage Return	(ASCII 13)				

5.6.2 Update Command Format

@<command>;<param1>;...;<paramn>;<data>;<Chksum><CR>

5.6.2.1 Example: Set Process Update

@UP;11;MyPro	cess;44 <cr></cr>
where:	
@;UP;	Update Process command
;	Separator
01	Parameter 01 (Set Process)
;	Separator
MyProcess	Data
;	Separator
??	Checksum
<cr></cr>	Carriage Return (ASCII 13)

5.6.2.2 Example Response: Set Process Update Succeeded

@UP;<ACQ>;??<CR>

5.6.2.3 Example Response: Set Process Update Failed

```
@UP;<NAK>;<ERR>;??<CR>
Where:
01 Illegal Command
02 Illegal Parameter
03 Illegal Format
04 Checksum Error
05 Request Denied
06 Unknown Error
```

5.7 Checksum Calculation

The sample code below calculates the FCS checksum of a string of characters.

In the code, Message is a string that has been stripped of terminator and checksum characters before being passed to this routine.

```
' XOR ASCII codes
For i = 1 To Len(Message)
    FCS = Asc(Mid$(Message, i, 1)) Xor FCS
Next i
' Convert FCS to two character hex string
If Len(Hex$(FCS)) = 1 Then
    CalcChkSum = "0" & Hex$(FCS)
Else
    CalcChkSum = Hex$(FCS)
```

NOTE: While checksums "may" be useful for RS-232 communications, they are not needed for Ethernet or ActiveX. If you don't want to use a checksum, replace the checksum in each command with "00" (two ASCII zero (Hex 30) characters). The program response will contain two checksum characters, which you can just ignore.

5.8 Command Summary

NOTE: Update commands (except UP02-UP10) are only valid in Stop Mode.

5.8.1 Query Process

@QP;<param1> where <param1> is: 01 Process Name Example Query: @QP;01 Example Response: @QP;06;MyProc(Process is MyProc) Process Time 02 (mm:ss) 03 Active Layer # 04 Layer Time (mm:ss) 05 Phase # (where phase numbers returned are) ShutterDelay Pha
Deposit Phase
Layer Stopped
Layer Starting
Not Used
Feed Ramp Phase
Feed Hold Phase
Idle Ramp Phase
Idle Phase Application Startup 09 ShutterDelay Phase 00 01 Program Initialize 02 Not Used Not Used 03 04 Process Stopped 13 05 Ramp1 Phase 06 Soak1 Phase 07 Ramp2 Phase 08 Soak2 Phase 06 Phase Time (mm:ss) Run # 07 All Process Names (comma delimited list) 08 Source Shutter Status, n=1 to 6 (0=Open, 1=Close) 1n Sensor Shutter Status , n=1 to 8 (0=Open, 1=Close) 2n 30 All Crystal Good Status (0=False, 1=True) Crystal n Good, n=1 to 8 (0=False, 1=True) 3n 39 All Crystal Fail (0=False, 1=True) Sensor to Output Map, n=1 to 8 4n DataLog Filename 50 51 DataLog Type (0=None, 1=Overwrite, 2=Append, 3=Run#) DataLog Interval in seconds 52

5.8.2 Update Process

```
@UP;<param1>;<data>
where <param1> is:
01
     Set Process
     Example Update @UP;01;MyProc(Select MyProc)
     Example Response: @UP;06;
02
     Start Process
03
     Stop Process
04
     Start Layer
05
     Stop Layer
06 Start Next Layer
07 Auto Mode (all films in layer)
   Manual Mode (all films in layer)
08
09
   Zero Thickness (all films in layer)
```

10 Set Run #


```
11 Set Active Layer #
```

- 2n Output n (1 to 6) Power (Manual Mode Only)
- 4n Map Sensor n to Output #
- 50 Set DataLog filename without extension (Stop mode only)
- 51 DataLog type (0=None, 1=Overwrite, 2=Append, 3=Run#)
- 52 DataLog Interval in seconds (set Bit 3 in Command 53 below)
- 53 DataLog Events (bit weighted integer)
 - Bit 0 End Deposit Phase
 - Bit 1 End Each Phase
 - Bit 2 I/O Event
 - Bit 3 Timed
 - Bit 8 Every Reading
 - Bit 9 Sensor Readings
 - Bit 10Analog Readings

5.8.3 Query/Update Layer

@QL;<param1>;<layer>;<output>
@UL<param1>;<layer>;<output>

NOTE: A <layer> value of zero sets/returns data on the current layer.

where	<paraml> is:</paraml>	
01	Film Name	
	Example: @UL;01;1MyFilm,New Film	(set Layer 1, MyFilm to
		NewFilm)
02	Setpoint	Å/s, V, or % Power
03	Start Thickness	kÅ
04	Time SP	mm:ss
05	Thickness SP	kÅ
06	Start Mode	0/1
07	Substrate Index (obsolete)	0 to 15
08	<pre># Layers in Process (query)</pre>	
09	Start Prompt	250 characters or less
10	Phase of the requested output (quer	y)
1n	Ramp n Start Thickness, n=1 to 9	kÅ
2n	Ramp n Ramp Time, n=1 to 9	mm:ss
3n	Ramp n New Rate, n=1 to 9	Å/s
41	Layer Indexer 1 Index	0 to 15
42	Layer Indexer 2 Index	0 to 15
43	Layer Indexer 3 Index	0 to 15
44	Source Indexer Index	0 to 15
45	<pre>Input Type (Sensors=0, TimedPower=1</pre>	, $Analog1-4 = 2-5$)
46	System Configuration	
47	Source Indexer Done	0/1
48	Layer Indexer 1 Done	0/1
49	Layer Indexer 2 Done	0/1
50	Layer Indexer 3 Done	0/1

5.8.4 Query/Update Film

```
@QF;<param1>;<layer>;<output>
@UF;<param1>;<layer>;<output>;<value>
Note: <layer>=0 is active layer
where <param1> is:
01
      P Term
02
     I Term
03
     D Term
04
     Shutter Delay Status (0/1)
05
     Shutter Timeout
06
     Shutter Accuracy
     Control Error Status (0/1/2)
07
     Control Error Accuracy
08
09
     Rate Sampling Status (0/1/2)
10
      Sample Accuracy
     Sample Time
11
12
      Sample Hold
13
     Ramp 1 Power
14
     Ramp 1 Time
      Soak 1 Time
15
     Ramp 2 Power
16
     Ramp 2 Time
17
     Soak 2 Time
18
19
     Feed Power
20
     Feed Ramp Time
21
     Feed Time
     Idle Power
22
     Idle Ramp Time
23
24
     Output (1-6)
25
     Source Index (obsolete)
26
    Max Power
27
     Slew Rate
28
     Material
3n
     Tooling n (n=1 to 8)
     AutoSoak2 (0/1)
40
```

5.8.5 Query Utility

@QU;<param1>

01	SQM242 DLL Version
02	SQM242 Mode (0/1)
03	SQM242 Period
04	SQM242 Filter
05	SQM242 Number of Cards Installed
06	Front Panel Enabled (0/1)
07	Application Visible (0/1)
11	SQS-242 Software Version

- 12 SQS-242 Operating System
- 13 SQS-242 Computer Name

5.8.6 Update Utility

```
@QU;<param1>;<Index>
```

- 02 SQM242 Mode (0/1)
- 03 SQM242 Period
- 04 SQM242 Filter
- 06 Front Panel Enabled (0/1)
- 07 Application Visible (0/1)
- 08 Full Scale Output (Index=1 to 6)
- 14 Application On Top(0/1)

5.8.7 Query Measurement

@QM;<param1>

1n Output n Power (n=1 to 6)
2n Output n Rate
3n Output n Thickness
4n Output n Deviation
5n Sensor n Rate (n=1 to 8)
6n Sensor n Thickness
7n Sensor n Frequency
8n Sensor n % Life
9n Analog Input n Voltage

5.8.8 Query Register

@QR;<paraml> (returns register value in HEX)

- 0 Layer/Phase Register
- 1 Sensor/Output Register
- 2 Analog/Output Register
- 20 Source Index Register
- 21 Source Index Done Register
- 22 Relay Register
- 24 Input Register
- 25 Layer Index Register
- 26 Layer Index Done Register

5.8.9 Update Register

@UR;<param1>;<value> (value in HEX)

- 0 Layer/Phase Register
- 1 Sensor/Output Register
- 2 Analog/Output Register
- 20 Source Index Register
- 21 Source Index Done Register
- 22 Relay Register
- 24 Input Register
- 25 Layer Index Register
- 26 Layer Index Done Register
- XXX Any Register

Chapter 6 Loop Tuning

This section will help you adjust your control loop PID parameters to achieve a stable deposition process. Keep in mind that there is no "best" way to determine PID parameters, and no one set of settings that are "best."

- 1 Setup System Parameters: Be sure that the output Full Scale voltage and crystal Min/Max Frequency parameters are accurate for your system. All Tooling parameters are best set to 100% for now. A Period of .25 seconds is also a good starting point. Simulate should be OFF.
- 2 Create a One-Layer Test Process: Create a new process that has a single film as its only layer, and select it as the current process. Set the film's Initial Rate to your desired rate and Final Thickness to a large value, say 10X your desired Final Thickness. Select the proper Sensor(s), Output, and Material. Set Max Power to 100% and Slew rate to 100%. Disable all errors except Crystal Fail. Set On Error to Stop Layer.
- 3 Test the Setup: Press Auto/Manual to start the layer in Manual mode. Slowly turn the control knob to a power of 10%, and verify that your power supply output is about 10% of full scale. Continue to turn the control knob until a Rate(Å/s) above 0 is shown. Again, verify that the power supply output agrees with the SQS-242 Power(%) reading. If the readings don't agree, check your wiring and process setup. In particular, verify that the System, Outputs, Full Scale voltage agrees with your power supply input specifications.
- 4 Determine Open Loop Gain: Slowly adjust the control knob until the Rate(Å/s) reading approximately matches your Initial Rate setting. Record the Power(%) reading as PWRDR (power @ desired rate). Slowly lower the power until the Rate(Å/s) reading is just at (or near) zero. Record the zero rate Power(%) reading as PWR0R.
- 5 Determine Open Loop Response Time: Calculate 1/3 of your desired rate (RATE1/3), and 2/3 of the desired rate (RATE2/3) for this layer. Slowly increase the power until Rate(A/s) matches RATE1/3. Get ready to record the loop's response to an input change. Quickly adjust Power(%) to PWRDR. Measure the time for the Rate (A/s) reading to reach RATE2/3. You may want to do this several times to get an average response time reading. Displaying the Rate graph will also help. Twice the measured time is the step response time, TIMESR. TIMESR is typically 0.7 to 1.5 seconds for E-Beam evaporation, 5 to 20 seconds for thermal evaporation.

Press Abort Process, then Manual/Auto to return to Auto mode. Follow these steps to set the loop PID parameters:

6 Set PID Values: In the Edit Process, Deposition tab set P=25, I= TIMESR, D=0. Assure that all Conditioning values are set to zero. Save the values and close the Edit Process dialog. Press Start Process and observe the Power graph. The power should rise from 0%, and stabilize near PWRDR with little ringing or overshoot. If there is more than about 10% overshoot, lower the P Term. If the time to reach PWRDR is very slow, increase the P Term. A lower I Term will increase response time, a higher value will eliminate ringing and setpoint deviations. It is unlikely you will need any D Term.

Continue to Start the process and adjust PID until steady-state response is smooth and the step response is reasonably controlled. You don't need to totally eliminate ringing during the step if the steady-state response is smooth. Preconditioning will minimize step changes.

7 Set Preconditioning: The power level you recorded as PWR0R is the power where deposition just begins. That's a good value for Ramp 1 power. PWRDR, or slightly less, is a good value for Ramp 2 Power. This will eliminate a large step change when entering the deposition phase.

Once PID terms are established for a material, they will typically be similar for other materials. Only the P Term and preconditioning power levels may need adjustment.