"False"
Skip to content
printicon
Main menu hidden.

Atomic and Molecular Physics

  • Number of credits 7.5 credits

About the course

Content
The course aims to provide basic knowledge about the structure of atoms and molecules. The systems will be treated with a gradually increasing degree of complexity. The hydrogen atom is treated first, then helium, alkali atoms and other atoms. A concrete application of interference counts, and of quantum mechanics in general, is given as the treatment proceeds from the central field approximation, and gradually introduces angular momentum, spin, spin-orbit interaction, nuclear effects and influence of external fields. Diatomic  molecules are then considered. Binding mechanisms such as ionic and covalent bonding are introduced using quantum mechanics. Vibration and rotation structures are reviewed. The Born-Oppenheimer approximation is reviewed. The course concludes with complicated polyatomic molecules.

Atomic and molecular physics, along with spectroscopic analysis methods, have a wide range of applications. This includes basic measurement techniques, important in e.g. science, environment and infrastructure.

Expected study results
After completing the course, the student should be able to:
To fulfil the goals of knowledge and understanding, the student should be able to:

  •     apply quantum mechanics and interference calculations to solve simple atomic structure,
  •     describe how the hydrogen atom, the helium atom and the alkali atoms are structured,
  •     explain what the spin-orbit interaction and fine structure are,
  •     explain the concept of LS coupling and atomic terms,
  •     account for nuclear effects such as hyperfine structure and isotope shifts,
  •     describe basic molecular potentials and the Born-Oppenheimer approximation,
  •     describe how two atoms can form a diatomic molecule through different bonding mechanisms,
  •     explain what vibrations and rotations in molecular systems are,
  •     describe key elements such as polyatomic molecules and different vibrational modes,
  •     describe how the structure of atoms and molecules is affected by external fields.

Forms of instruction
The teaching is conducted in the form of lectures, problem solving sessions, and supervision during laboratory work.

Examination
The exam on the course theory part is done individually in the form of a written exam at the end of the course. For the written examination one of the grades Fail (U), Pass (G) or Pass with Distinction (VG) will be set. The examination on the course's computer lab module is done individually through written reports and oral presentations. On the written reports and oral presentations one of the grades Fail (U) or Pass (G) will be set.
 
For the course, one of the grades Fail (U), Pass (G) or Pass with Distinction (VG) is set. To be pass for the course, all parts must be passed. Provided that all parts are passed, the grade on the entire course will be the same as on the theory part. Students who have passed the exam can not take another exam in order to get a higher grade.

Literature
Foot Christopher J.
Atomic physics
Oxford : Oxford University Press : 2005 : xiii, 331 p. :
ISBN: 0-19-850695-3 (inb.)

Molecular physics : theoretical principles and experimental methods
Weinheim : Wiley-VCH : 2005 : xiv, 470 p. :
ISBN: 3-527-40566-6

Contact us

Please be aware that the University is a public authority and that what you write here can be included in an official document. Therefore, be careful if you are writing about sensitive or personal matters in this contact form. If you have such an enquiry, please call us instead. All data will be treated in accordance with the General Data Protection Regulation.

Course is given by
Department of Physics
Contactperson for the course is:
Claude Dion