Skip to content
Main menu hidden.

Machine learning

  • Number of credits 7.5 credits
  • Level Master’s level
  • Starting Spring Term 2022

About the course

The goal of this course is to provide theoretical and methodological knowledge in machine learning. The course will explain the basic grounding in concepts such as training and tests sets, over-fitting, regularization, kernels, and loss function etc. The focus of this course will be introducing a range of model based and algorithmic machine learning methods including regression, decision trees, naive Bayes, neural network, clustering, and reinforcement learning. Some other topics will also be covered including deep learning, topic modelling (latent dirichlet allocation), and optimization (gradient descending). To understand how machine learning algorithm is designed and evaluated, the course will cover the complete process of data collection, feature creation, algorithms, and evaluation in real applications (e.g., text classification, search engine, and recommendation system). Hands-on assignments are mandatory in this course, where some machine learning tools will be roughly introduced. The expected learning outcomes include gaining theoretical knowledge about machine learning and the practical experience designing/implementing machine learning algorithms.
Nowadays, you may find a significant amount of machine learning contents especially online (e.g., toolkit, online courses, books, papers etc.), this course will mainly give an overview of machine learning on fundamental knowledge (i.e., concepts, techniques, and algorithmic models) and how some of these algorithms have been applied in the practical applications (e.g., text mining, information retrieval, semantic Web)

Included in the requreiments to the course it is asssumed that you as a student have basic knowledge of Linear Algebra, Calculus, Probability, and that you are proficient in at least one programming language, Python is preferred, which will be used in the course assignments.

Application and eligibility

Machine learning, 7.5 credits

Det finns inga tidigare terminer för kursen Spring Term 2022 Det finns inga senare terminer för kursen


17 January 2022


23 March 2022

Study location




Type of studies

Daytime, 50%

Required Knowledge

Univ: To be admitted you must have (or equivalent) 90 ECTS-credits including 60 ECTS-credits in Computing Science or two years of completed studies within a study programme (120 ECTS-credits). In both cases, including at least 7.5 ECTS-credits in artificial intelligence (e.g. 5DV121) and at least 7.5 ECTS-credits in mathematical statistics, (e.g. 5MS045).

Proficiency in English equivalent to Swedish upper Secondary course English A/5. Where the language of instruction is Swedish, applicants must prove proficiency in Swedish to the level required for basic eligibility for higher studies. Entry requirements


Academic credits Applicants in some programs at Umeå University have guaranteed admission to this course. The number of places for a single course may therefore be limited.

Application code



Application deadline was 15 October 2021. Please note: This second application round is intended only for EU/EEA/Swiss citizens. Submit a late application at

Application and tuition fees

As a citizen of a country outside the European Union (EU), the European Economic Area (EEA) or Switzerland, you are required to pay application and tuition fees for studies at Umeå University.

Application fee

SEK 900

Tuition fee, first instalment

SEK 17,850

Total fee

SEK 17,850

Contact us

Please be aware that the University is a public authority and that what you write here can be included in an official document. Therefore, be careful if you are writing about sensitive or personal matters in this contact form. If you have such an enquiry, please call us instead. All data will be treated in accordance with the General Data Protection Regulation.

Contactperson for the course is:
Student Office at CS