GAINING MATHEMATICAL UNDERSTANDING:

The effects of creative mathematical reasoning and cognitive proficiency

<u>Bert Jonsson</u>, Johan Lithner, Carina Granberg, Mathias Norqvist, Yvonne Liljeqvist, Tony Qwillbard, Linus Holm

ACTIVE LEARNING: TWO MAIN APPROCHES

1. Retrieval practice (testbaserat lärande)

Bert Jonsson & Lars Nyber

LÄRANDE

INLÄRNING OCH MINNE

2. Creative mathematical reasoning

BASED ON A THEORETICAL FRAMEWORK

Lithner, J. (2008). A research framework for creative and imitative reasoning. *Educational studies in mathematics*, 67(3), 255-276.

Lithner, J. (2017). Principles for designing mathematical tasks that enhance imitative and creative reasoning. *ZDM*, *49*(6), 937-949.

INVESTIGATED THROUGH SEVERAL EMPIRICAL STUDIES

Jonsson, B Granberg, G, Lithner, J.(2020). Gaining mathematical understanding: The effects of creative mathematical reasoning and cognitive proficiency. *Frontiers in psychology (pending revision)*

Norqvist, M., Jonsson, B., Lithner, J., Qwillbard, T., & Holm, L. (2019). Investigating algorithmic and creative reasoning strategies by eye tracking. *The Journal of Mathematical Behavior*. doi:https://doi.org/10.1016/j.jmathb.2019.03.008

Jonsson, B., Kulaksiz, Y. C., & Lithner, J. (2016). Creative and algorithmic mathematical reasoning: effects of transfer-appropriate processing and effortful struggle. *International Journal of Mathematical Education in Science and Technology*, *47*(8), 1206-1225. doi:10.1080/0020739X.2016.1192232

Jonsson, B., Norqvist, M., Liljekvist, Y., & Lithner, J. (2014). Learning mathematics through algorithmic and creative reasoning. *The Journal of Mathematical Behavior*, *36*(0), 20-32. doi:http://dx.doi.org/10.1016/j.jmathb.2014.08.003

UMEÅ UNIVERSITY Umeå School of Education

Swedish Research Council

INDIVIDUAL DIFFERENCES IN COGNITION

FRAMWORK:

CREATIVE AND ALGORITHMIC (IMITATIVE) REASONING

•Aim: Develop teaching models that are more efficient for learning than common imitative models.

- The teacher and/or textbook describes the algorithm and explains it, which seems to be many teachers' ideal <u>Denoted as Algorithmic reasoning (AR)</u>
- The student constructs the solution method: the student construct the new knowledge herself
 <u>Denoted as Creative Mathematical Reasoning (CMR)</u>

- Algorithmic reasoning (AR) Solutions are provided
- An algorithm is a finite sequence of instructions which allows one to find a definite result for a given class of problems (y=3x+1)
- It has high reliability and can rapidly produce an answer
- It can be used without (almost) any understanding of the task.

Creative mathematically reasoning (CMR).

Constructing the solutions

- *Creativity;* a new reasoning (new to the reasoner) sequence is created, or a forgotten one is re-created
- *Plausibility;* there are arguments supporting the strategy choice and/or strategy implementation explaining why the conclusions are true or plausible;
- Anchoring; the arguments are anchored in the intrinsic mathematical properties of the components that are involved in the reasoning required to solve the problem

 e.g 6/9 is a smaller proportion than 3/4

UMEÅ UNIVERSITY

Algorithmic Reasoning (AR)

When squares are put in a row it looks like the figure to the right. 13 matches are needed for four squares:

If x is the number of squares then the number of matches y can be calculated by the function y=3x+1

Example: If 4 squares are put in a row then $y=3x+1=3\cdot4+1=13$ matches are needed.

How many matches are needed to get 6 squares in a row?

Creative Mathematical Reasoning (CMR)

When squares are put in a row it looks like the figure to the right. 13 matches are needed for four squares:

If x is the number of squares then the number of matches y can be calculated by the function y=3x+1

Example: If 4 squares are put in a row then $y=3x+1=3\cdot4+1=13$ matches are needed.

How many matches are needed to get 6 squares in a row?

Algorithmic Reasoning (AR)

When squares are put in a row it looks like the figure to the right. 13 matches are needed for four squares:

If x is the number of squares then the number of matches y can be calculated by the function y=3x+1

Example: If 4 squares are put in a row then $y=3x+1=3\cdot4+1=13$ matches are needed.

How many matches are needed to get 6 squares in a row?

Creative Mathematical Reasoning (CMR)

How many matches are needed to get 6 squares in a row?

Practice tasks

13 matches are needed for four squares.

looks like the figure on the right,

If x is the number of squares then the number of matches y could be calculated by the function $y=3x\ +1$

Example: If 4 squares are put in a row then $y = 3x + 1 = 3 \cdot 4 + 1 = 13$ matches are needed

How many matches are needed to get 100 squares in a row?

B) Practice CMR-task, constructing method

When squares are put in a row, it

looks like the figure on the right,

13 matches are needed for four squares.

How many matches are needed to get 100 squares in a row?

C) Practice CMR-task, constructing formula

When squares are put in a row, it

looks like the figure on the right,

13 matches are needed for four squares.

If x is the number of squares in a row and y is the number of matches needed to build the squares.

How could you describe y as a function of x?

A) Posttest practice task

When squares are put in a row, it

looks like the figure on the right,

13 matches are needed for four squares.

How many matches are needed to get 100 squares in a row?

C) Posttest formula practice task When squares are put in a row, it

looks like the figure on the right,

13 matches are needed for four squares.

If x is the number of squares in a row and y is the number of matches needed to build the squares.

How could you describe y as a function of x?

ERSITY

Jonsson, B., Norqvist, M., Liljekvist, Y., & Lithner, J. (2014). Learning mathematics through algorithmic and creative reasoning. *The Journal of Mathematical Behavior*, *36*(0), 20-32. doi:http://dx.doi.org/10.1016/j.jmathb.2014.08.003

A) Practice AR-task, method provided
When squares are put in a row, it
looks like the figure on the right,
13 matches are needed for four squares.

If x is the number of squares then the number of matches y could be calculated by the function $y=3x \ \text{+}1$

Example: If 4 squares are put in a row then $y = 3x + 1 = 3 \cdot 4 + 1 = 13$ matches are needed

How many matches are needed to get 100 squares in a row?

B) Practice CMR-task, constructing method

looks like the figure on the right,

13 matches are needed for four squares.

How many matches are needed to get 100 squares in a row?

C) Practice CMR-task, constructing formula

When squares are put in a row, it

looks like the figure on the right,

13 matches are needed for four squares.

If x is the number of squares in a row and y is the number of matches needed to build the squares.

How could you describe y as a function of x?

How many matches are needed to get 100 squares in a row?

C) Posttest formula practice task When squares are put in a row, it looks like the figure on the right,

13 matches are needed for four squares.

If x is the number of squares in a row and y is the number of matches needed to build the squares.

How could you describe y as a function of x?

Jonsson, B., Kulaksiz, Y. C., & Lithner, J. (2016). Creative and algorithmic mathematical reasoning: effects of transfer-appropriate processing and effortful struggle. *International Journal of Mathematical Education in Science and Technology*, *47*(8), 1206-1225. doi:10.1080/0020739X.2016.1192232

Transfer-appropriate processing

The average effect size (Cohen's *d*) was found to be 0.27, which is considered as a small effect size.

Effortful struggle

The average effect size (Cohen's *d*) was found to be 1.34, which is clearly above 0.8 – the margin for a large Cohen's *d* effect siz

Can practicing with CMR tasks elicit reasoning that can be transferred to different tasks that require similar general solution ideas but different specific solution methods? Jonsson, B Granberg, G, Lithner, J.(2020). Gaining mathematical understanding: The effects of creative mathematical reasoning and cognitive proficiency. *Frontiers in psychology (pending revision)*

DIFF CMR -AR

INDIVIDUAL DIFFERENCES IN COGNITION

Jonsson, B Granberg, G, Lithner, J.(2020). Gaining mathematical understanding: The effects of creative mathematical reasoning and cognitive proficiency. *Frontiers in psychology* (*pending revision*)

Method: Corneal eye reflection technique

- A camera focuses on one or both eyes
- Uses infrared light to create corneal reflections (CR).
- Fixations are defined as a period between saccades, excluding blink of the eye
- Only fixations with durations longer than 50 ms were considered for analysis

UMEÅ UNIVERSITY

Norqvist, M., Jonsson, B., Lithner, J., Qwillbard, T., & Holm, L. (2019). Investigating algorithmic and creative reasoning strategies by eye tracking. *The Journal of Mathematical Behavior*. doi:https://doi.org/10.1016/j.jmathb.2019.03.008

Norqvist, M., Jonsson, B., Lithner, J., Qwillbard, T., & Holm, L. (2019). Investigating algorithmic and creative reasoning strategies by eye tracking. *The Journal of Mathematical Behavior*. doi:https://doi.org/10.1016/j.jmathb.2019.03.008

Kvadrater i en ræd sätts samman som i figuren till höger. Till 4 kvadrater i rad behövs 13 tändstickor.

Om x är antalet kvadrater som ska läggas i rad så kan man beräkna antalet tändstickor y med funktionen till höger.

Exempel: Om 4 kvadrater ska läggas i rad behövs y=3x+1=3·4+1=13 tändstickor. Hur många tändstickor behövs för att få 100 kvadrater i rad?

$$y = 3x + 1$$

Heatmaps

<u>Cluster analysis</u>

- Group objects/individuals/performance so that those that are more similar ends up in the same grouping- so called clusters
- **Hierarchical cluster analysis**: all the information (eye fixations) from all the areas of interests are extracts and clusters of eye fixations are formed.
- Variance within clusters are minimized and variance between cluster are maximized and through at iterative process amalgamated into clusters of increasing dissimilarities (Ward, 1963) et UNIVERSITY

Average eye fixations

Average eye fixations

IN SUM

- CMR an active approach more beneficial than the more passive AR approach
- Cognitive ability does play a role, but is independent of learning condition CMR/AR
- Eye tracking analyses indicate that cognitively weaker tend to focus on the irrelevant information
- Effortful struggle seems to be important- likely associated with the construction of tasks

• Consequences

- $\circ~$ Let them struggle by constructing
- "The more the merrier" in terms of information is not always the best
 - Especially for cognitively less proficient students

UMEÅ UNIVERSITY

IN SUM

- What we don't know
 - $_{\odot}$ The effects on Special education needs students
 - \circ Long-term effects
 - \circ What characterize those students that benefit relative those that don't benefit
 - Effects of personality

THANK YOU FOR YOUR ATTENTION

bert.jonsson@umu.se

https://www.researchgate.net

https://scholar.google.com/

D) AR-practice task

With 6 matches, you can build a house. The houses can be put together into a row of houses. The outer edge is built of red matches

If x is the number of houses, the number of red matches y can be calculated by the formula y = 3x + 2

Example: If 4 houses are put together, $y = 3 \cdot 4 + 2 = 14$ red matches are needed

How many red matches are needed to put 100 houses together?

E) CMR-practice task

With 6 matches, you can build a house. The houses can be put together into a row of houses. The outer edge is built of red matches. If 4 houses are put together in a row, 14 red matches are needed

How many red matches are needed to put 100 houses together?

F) Transfer Posttest task

With 8 matches, you can build a two-stored house. The houses can be put together into a row of houses. The outer edge is built of red matches. If 4 two-stored houses are put together in a row, 14 red matches are needed

How many red matches are needed to put 100 two-stored houses together?

D) AR-practice task

With 6 matches, you can build a house. The houses can be put together into a row of houses. The outer edge is built of red matches

If x is the number of houses, the number of red matches y can be calculated by the formula y = 3x + 2

Example: If 4 houses are put together, $y = 3 \cdot 4 + 2 = 14$ red matches are needed

How many red matches are needed to put 100 houses together?

E) CMR-practice task

With 6 matches, you can build a house. The houses can be put together into a row of houses. The outer edge is built of red matches. If 4 houses are put together in a row, 14 red matches are needed

How many red matches are needed to put 100 houses together?

F) Transfer Posttest task

With 8 matches, you can build a two-stored house. The houses can be put together into a row of houses. The outer edge is built of red matches. If 4 two-stored houses are put together in a row, 14 red matches are needed

How many red matches are needed to put 100 two-stored houses together?

