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This paper is a description of the efforts made to investigate whether item response theory 
(IRT) would be applicable to the Swedish Scholastic Aptitude Test (SweSAT). The aim has 
been to examine whether a switch from classical test theory (CTT) to IRT, in the process of 
item development, test design, scoring or equating, would improve the quality of the test. The 
paper consists of three parts. Part I, “The applicability of IRT models to the SweSAT sub-
tests”, is a summary of five reports (Stage, 1996, 1997a, b, c and d) describing the different 
steps taken, in investigating if an IRT model could be fitted to the five SweSAT sub-tests 
separately. Part II, “Comparison between item analysis based on IRT and CTT”, is a summary 
of three earlier reports (Stage, 1998a, b and 1999) in which comparisons were made between 
CTT difficulty and discrimination indices and IRT difficulty and discrimination parameters 
on the three sub-tests ERC, READ and WORD. In part III, “Applicability of IRT to SweSAT: 
the total test”, a description is given of an attempt to fit an IRT model to the total SweSAT. 
The conclusion was that since the model data fit was somewhat dubious, especially for the 
total test, there was nothing to be gained by switching from CTT to IRT. 

Introduction      

The Swedish Scholastic Aptitude Test (SweSAT) is a norm-referenced test, which is used for 
selection to higher education in Sweden. The test is administered twice a year, once in spring 
and once in autumn. After each administration that particular test is made public and therefore 
a new version has to be developed for each administration. As test results are valid for five 
years it is important that results from different administrations are comparable. 

Since 1996 the test consists of 122 multiple-choice items, divided into five sub-tests: 

1. DS a data sufficiency sub-test measuring mathematical, reasoning ability by 22 
items. 

2. DTM a sub-test measuring the ability to interpret diagrams, tables and maps by 20 
 items. 

3. ERC an English reading comprehension sub-test, consisting of 20 items. 

4. READ a Swedish reading comprehension sub-test, consisting of 20 items. 

5. WORD a vocabulary sub-test consisting of 40 items. 

Ever since the first version of SweSAT was taken into use in 1977, the development and 
assembly of the test as well as the equating of forms from one administration to the next has 
been based on the classical test theory (CTT).  

In the classical test theory (CTT), which began to evolve with the Binet test almost a hundred 
years ago, the test score is viewed as made up of two components, a “true score” and an error. 
The true score and error are regarded as completely independent. The true score is viewed as 
unchanging from one form of a test to a parallel alternate form, and from one occasion to 
another. The error is considered to be unique to the specific measurement, and to be entirely 
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independent of the error that might be expected to appear on another measurement of the 
same construct. The true score can never be directly observed. It can only be inferred from 
consistency of performance from one test score to another. 

CTT has been a productive model that led to the formulation of a number of useful 
relationships:  

• the relation between test length and test precision (reliability)  

• estimates of the precision of difference scores and change scores  

• the estimation of properties of composites of two or more measures  

• the estimation of the degree to which indices of relationship between different 
measurements are attenuated by the error of measurement in each. 

Although CTT’s major focus is on test-level information, item statistics (i.e. item difficulty 
and item discrimination) are also important. At the item level CTT is relatively simple, since 
there are no complex theoretical models to relate an examinee’s ability or success on a 
particular item. The proportion of a well-defined group of examinees, that answers an item 
correctly (empirically examined) - the p-value - is used as the index for the item difficulty 
(actually it is an inverse indicator of difficulty, since higher values indicate easier items). The 
ability of an item to discriminate between high ability examinees and low ability examinees is 
expressed statistically as the correlation coefficient between the scores on the item and the 
scores on the total test. 

CTT models are often referred to as “weak” models, because the assumptions of these models 
are easily met by test data.  

There are, however, some shortcomings with CTT. One shortcoming is that item difficulty 
and item discrimination indices are group dependent; the values of these indices depend on 
the group of examinees in which they have been obtained. Another shortcoming is that 
observed and true test scores are dependent. Observed and true scores rise and fall with 
changes in test difficulty. Another shortcoming has to do with the assumption of equal errors 
of measurement for all examinees. The ability estimates are in fact less precise both for low 
and for high ability students than for students of average ability. 

During the last decades a new measurement system, item response theory (IRT), has been 
developed and it has become an important complement to classical test theory in the design, 
construction and evaluation of tests. Within the framework of IRT it is possible to obtain item 
characteristics which are not group dependent; ability scores, which are not test dependent; 
and a measure of precision for each ability level. 

According to Hambleton et al. (1991): 

IRT rests on two basic postulates: a) the performance of an examinee on a test 
item can be predicted (or explained) by a set of factors called traits, latent traits, 
or abilities; and b) the relationship between examinee’s item performance and the 
set of traits underlying item performance can be described by a monotonically 
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increasing function called an item characteristic function or item characteristic 
curve. This function specifies that as the level of the trait increases, the 
probability of a correct response increases. (p. 7) 

There are several different IRT models, but they all have in common the use of a 
mathematical function to specify the relationship between observable examinee test 
performance and the unobservable traits or abilities assumed to underlie performance on the 
test. In any practical application of latent trait models one must specify the mathematical form 
of the item characteristic curves and obtain estimates of the item parameters needed to 
describe the curves. In the three-parameter model these parameters are: 

1. item difficulty “b” 

2. item discrimination “a”  

3. a pseudo guessing parameter “c” 

In the two-parameter model no guessing is assumed to exist, and in the one-parameter model 
item discrimination is assumed to be the same for all items. 

IRT models are referred to as “strong” models, since the assumptions may be difficult to meet 
with test data. One important assumption included in the most common IRT models is the 
assumption of unidimensionality, which means that only one ability is measured by the items 
that make the test. What is required for the unidimensionality assumption to be met 
adequately is the presence of one dominant factor that influences test performance. Another 
and related assumption is that of local independence. Local independence means that when 
the abilities influencing test performance are held constant, examinee’s responses to any pair 
of items are statistically independent. 

Once a latent trait model is specified, the precision with which it estimates examinee ability 
can be determined for different ability levels. The information varies with ability level, which 
makes it possible to determine the standard error of estimate for different ability levels. The 
item information function gives information of the usefulness of the item in measuring ability 
at a particular ability level. 

Presently IRT is receiving increasing attention from test agencies in test-design, test-item 
selection, in addressing item-bias and equating and reporting test scores. The potential of IRT 
for solving these kind of problems is substantial. It is essential, however, in order to achieve 
the possible advantages from an IRT model, that there is fit between the model and the test 
data of interest. A poorly fitting IRT model will not yield invariant parameters. 

In many IRT applications reported in the literature, model-data fit and the 
consequences of misfit have not been investigated adequately. As a result, less is 
known about the appropriateness of particular IRT models for various 
applications than might be assumed from the voluminous IRT literature. 
(Hambleton et al., 1991. p.53) 

Hambleton et al. (1991) further warn against placing too much confidence in statistical tests, 
since these tests have a serious flaw: their sensitivity to examinee sample size. Instead the 
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authors recommend that judgements of fit of the model to test data be based on three types of 
evidence: 

1. Validity of the assumptions of the model for the test data 

2. Extent to which the expected properties of the model (e.g. invariance of item and ability 
parameters) are obtained. 

3. Accuracy of model predictions using real and, if appropriate, simulated test data.    

In the following parts of this paper results from several types of analyses are reported. The 
aim of these investigations have been to find different kind of evidence for or against fit of an 
IRT model to SweSAT test data.  
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I. The applicability of IRT models to the SweSAT sub-tests 

IRT has a great potential for solving many problems in testing and measurement. The success 
of specific IRT applications is not assured, however, simply by processing test data through 
one of the computer programs…. The advantages of item response models can be obtained 
only when the fit between the model and the test data of interest is satisfactory. (Hambleton et 
al., 1991, p. 53) 

For the investigation of whether an IRT model could be successfully fitted to each one of the 
five sub-tests DS, DTM, ERC, READ, and WORD a random sample of three percent of the 
82,506 examinees, who took part in the SweSAT in spring 1996 was used.  The sample 
consisted of 2,461 test-takers: 1,349 females and 1,112 males. The results of these examinees 
on the separate sub-tests were the data, which have been analyzed in different ways. 

The first step was to perform a standard classical item analysis, the outcome of which is 
presented below. 

Classical item analysis 

The CTT item analysis of the DS sub-test gave a range of p-values from .40 to .81, and a 
range of biserial correlations from .25 to .70. The reliability coefficient, alpha, was r =.82.  

The CTT item analysis of the DTM sub-test gave a range of p-values from .28 to .82 and a 
range of biserial correlations1 from .19 to .56. The reliability coefficient, alpha, was r =.72. 

The CTT item analysis of the ERC sub-test gave a range of p-values from .28 to .82 and a 
range of biserial correlations1 from .19 to .56. The reliability coefficient, alpha, was r =.72. 

The CTT item analysis of the READ sub-test gave a range of p-values from .34 to .84, and a 
range of biserial correlations1 from .21 to .45. The reliability coefficient, alpha, was r =.68. 

The CTT item analysis of the WORD sub-test, finally, gave a range of p-values from .16 to 
.96, and a range of biserial correlations1 from .022 to .64.  The reliability coefficient, alpha 
was r = .85. 

                                                 

1 The biserial correlations are calculated as the correlation between the item and the total score without that item. 

2 There was one deviating item, which did not work properly; hence the very low biserial correlation.  
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The ranges of biserial correlations indicate that there is a substantial variation in the 
discrimination power of the items in all five sub-tests. Sometimes, though, the range may be 
deceptive because of a couple of ”outliers”. Moreover high biserial correlations are 
sometimes associated with very easy items. Such discrimination indices do not really reveal 
effective items, and therefore the p-values were plotted against the biserial correlations for all 
the items in each sub-test. In figure 1 the plot for the WORD sub-test is shown as an example. 
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Figure 1. Biserial correlations plotted against p-values of the 40 items in the WORD sub-test. 

The plots, which were similar for all five sub-tests, gave support to the assumption that there 
actually was variation in the discriminating power of the items in all sub-tests. There did not 
seem to be any connection between easy items and high biserial correlations. The conclusion 
was that there seems to be a need for an item discrimination parameter, and therefore a one- 
parameter IRT model seemed unsuitable for the results of all sub-tests. 

To examine whether guessing had taken place in the tests, the test-takers with the lowest 
results were studied. All test-takers below the first percentile on each sub-test were selected, 
and difficult items were defined as items with p-values lower than .50.  

The results of these poor examinees on the most difficult items of each sub-test were studied, 
and the result was that on the DS sub-test the p-values for these poor examinees on the eight 
most difficult items were: 
p =  .11,  .30,  .08,  .14,  .20,  .13,  .11, and  .17 

on the DTM sub-test: 

p =  .26,  .14,  .11,  .06,  .17,  .18,  .11, and  .20 

on the ERC sub-test: 

p =  .21,  .24,  .12,  .22,  .19,  .15, and  .35 

on the READ sub-test: 

p =  .17,  .16,  .12, and  .15 
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on the WORD sub-test: 

p =           .13,  .01,  .14,  .01,  .11, and  .22 

These results indicated that guessing can hardly be excluded on any of the sub-tests, and 
therefore a two-parameter model also appeared to be unsuitable to fit the data. 

Factor analysis 

An assumption common to all IRT models is that the set of test items is unidimensional. A 
crude measure of unidimensionality is the reliability coefficient, alpha, as this coefficient is a 
measure of the internal consistency of the items in a test. The coefficient alpha varied 
between .68 and .85 for the sub-tests. The coefficient r = .68 indicates that the sub-test is not 
very homogenous, but this is only a rude measure. A more appropriate method for assessing 
the unidimensionality of a test is factor analysis (Hambleton & Rovinelli, 1986). If the factor 
analysis shows only one dominant factor, this is support for unidimensionality. The results of 
the factor analyses were: 

For the DS sub-test the analyses resulted in three factors with eigenvalues: 4.77, 1.21, and 
1.09 respectively. The variance explained by the first factor was 21.7 percent, and all items 
had substantial loadings on the first factor (between .24 and .64). 

For the DTM sub-test the result was four factors with eigenvalues: 3.3, 1.2, 1.1, and 1.0 
respectively. The variance, explained by the first factor, was 16.4 percent. 

For the ERC sub-test the result was also four factors with eigenvalues: 3.8, 1.1, 1.0, and 1.0 
respectively. The variance, explained by the first factor, was 19.4 percent. 

For the READ sub-test the result was five factors with eigenvalues: 2.9, 1.1, 1.0, 1.0, and 1.0 
respectively. The variance, explained by the first factor, was 14.5 percent. 

For the WORD sub-test, finally, the unrotated factor analysis resulted in nine factors with 
eigenvalues: 6.1, 1.4, 1.2, 1.2, 1.1, 1.1, 1.0, 1.0 and 1.0 respectively. The variance explained 
by the first factor was 15.4 percent. 

All eigenvalues were plotted, and the plots for the two sub-tests with the smallest first 
eigenvalues, i.e. the READ and the WORD sub-tests are shown in Figure 2. 
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Figure 2. Plot of eigenvalues for the READ (to the left) and the WORD (to the right) sub-
tests. 

In Figure 2 it is shown that, after all, there seems to be one dominant first factor in both sub-
tests, since according to Hambleton and Rovinelli (1986): 

The number of ”significant” factors is determined by looking for the ”elbow” in 
the plot. The number of eigenvalues to the left of the elbow is normally taken to be 
the number of significant factors underlying test performance. (p. 289) 

Even though it would have been better if the amount of variance explained by the first factor 
generally had been greater it is not implausible or unreasonable to assume a single factor with 
the test data for any of the sub-tests. 

The three-parameter logistic IRT model 

An attempt was made to fit the results of each sub-test to the three-parameter logistic IRT 
model by means of the program BILOGW (Mislevey & Bock, 1990). When the number of 
items is 20 or greater, approximate chi-square statistics for the goodness of fit of each item 
are included as output of the program. For this purpose, the cases in the calibration sample are 
sorted into successive intervals of the latent continuum according to the estimates of their 
ability rescaled to mean = 0 and standard deviation = 1. This gives a reasonable test of fit if 
the number of items is large enough to make an assignment of cases accurate, and if the 
sample size is large enough to retain three or more intervals. In these studies the least number 
of items was 20 and the sample of examinees was large. The number of intervals used was 10 
for most of the items. The outcome of the goodness of fit analyses were: 

For the DS sub-test the outcome was that for 11 items there was model data misfit at α = .05 
level, and for four of these items the misfit was significant at α = .01 level. The reliability 
index was r = .84, which may be compared with coefficient alpha in the classical analysis, 
which was r = .82. 
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For the DTM sub-test the outcome was that for ten items there was significant model data 
misfit, and for eight of these items the misfit was significant at α = .01 level. The reliability 
index was r = .74, as compared with coefficient alpha, which was r = .72. 

For the ERC sub-test the outcome was 14 items with significant model data misfit, and for 
seven of these items the misfit was significant at α = .01 level. The reliability index was r = 
.80, while coefficient alpha was r = .76. 

For the READ sub-test the outcome was nine items with significant model data misfit, and for 
seven of these items the misfit was significant at α = .01 level. The reliability index reported 
was r = .72, and coefficient alpha was r = .68.  

And finally the outcome of the goodness of fit analysis for the WORD sub-test was that for 
eight of the items there was a model data misfit which was significant at α = .05 level and for 
one of these eight items the misfit was significant at α = .01 level. The reliability index 
reported was r = .87, while the reliability coefficient, alpha was r = .85. 

Residual analyses  

Another type of goodness of fit analyses were made by means of the program RESID 
(Rogers, 1994). In carrying out these analyses, examinees are first sorted into ability 
categories. The number of ability levels was specified to eight and the observed proportions 
of examinees in each ability category, answering the item correctly, were calculated. 
Expected proportions correct for each ability interval were obtained by computing the 
probability of success on the item on each ability level. Residual values (observed - expected) 
and standardized residuals were then computed. The program also contains chi-square fit 
statistics for each item as output. 

The outcome of the RESID analyses was: 

For the DS sub-test the differences between observed and expected values were statistically 
significant for two items, both at the .05 level. 
For the DTM sub-test the differences were statistically significant for six items, five of which 
on .01 level. 

For the ERC sub-test the differences were significant for seven items, two of which at .01 
level. 

For the READ sub-test the differences were statistically significant for five items, two of 
which at .01 level.  

Finally for the WORD sub-test the differences were statistically significant for six items, one 
of which at the .01 level.  

Residuals make it possible to compare predicted and actual performance. Raw residuals are 
the differences between expected and observed performance on an item at a specified 
performance level. Standardized residuals (SRs) take into account the sampling error 
associated with each performance level as well as the number of examinees at that particular 
level of performance. When the model fits the data the SRs might be expected to be small and 
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randomly distributed about 0. Within the framework of regression theory it is common to 
assume that the distribution of SRs is approximately normal. In Table 1 a summary of the SRs 
from the goodness of fit analyses is given. 

Table 1.  Absolute values of the standardized residuals (per cent) for the five sub-tests 

SRs DS DTM ERC READ WORD 
| 0-1 | 72.16 65.63 62.50 68.75 70.31 
| 1-2 | 22.16 25.00 31.25 24.38 26.25 
| 2-3 | 5.11 7.50 5.00 6.88 3.13 
|  >3 | .57 1.88 1.25 0.00 .31 

The results in Table 1 show that even though the distributions for the DTM and ERC sub-tests 
are a bit too flat, all the distributions of SRs are fairly close to the normal distribution which 
is supposed to be strong support for model data fit. 

Hambleton et al. (1991) have given the following recommendations regarding assessment of 
model data fit:  

In assessing model-data fit, the best approach involves a) designing and 
conducting a variety of analyses designed to detect expected types of misfit, b) 
considering the full set of results carefully, and c) making a judgment about the 
suitability of the model for the intended application. Analyses should include 
investigations of model assumptions, of the extent to which desired model features 
are obtained, and of differences between model predictions and actual data. 
Statistical tests may be carried out, but care must be taken in interpreting the 
statistical information. The number of investigations that may be conducted is 
almost limitless. (p. 74) 

For the DS sub-test a comparison was made between item parameters estimated on two 
different samples of test-takers. The correlation between b-values was r = .95, and the 
correlation between a-values was r = .72. 

For the DTM sub-test one comparison was made between parameters estimated within IRT 
and indices calculated within CTT. The correlation between the estimated b-values and the 
calculated p-values was r = -.94, and the correlation between estimated a-values and 
calculated biserial correlations (rbis) was r = .82. The correlation between test-scores and 
estimated ability parameters was r = .95. Another comparison was made between parameters 
estimated on male and female test-takers, and the outcome of this comparison was that the 
correlation between b-values estimated on male and female examinees was r = .89, and 
between a-values r = .91. 

The same comparisons were made for the ERC sub-test. The correlation between estimated b-
values and calculated p-values on this sub-test was r = -.88, and between estimated a-values 
and calculated rbis the correlation was r = .73. The correlation between b-values estimated on 
male examinees and b-values estimated female examinees was r = .93, and the correlation 
between a-values was r = .83. 
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The same comparisons were also made for the READ and WORD sub-tests. For the READ 
sub-test the correlation between p- and b-values was r = -.98, and for the WORD sub-test this 
correlation was r = -.74. For the READ sub-test the correlation between rbis and a-values was r 
= .84, and for the WORD sub-test it was r = .82. The correlation between b- values estimated 
on males and b-values estimated on females on the READ sub-test was r =.92, and on the 
WORD sub-test this correlation was r = .85. The correlation between a-values estimated on 
male examinees and a-values estimated on female examinees was r = .76 on the READ sub-
test and r = .77 on the WORD sub-test. The results of these group comparisons are given in 
Table 2. 

Table 2.  Relations between item parameters estimated within IRT and item indices 
calculated within CTT, and between IRT item parameters estimated on female 
and male examinees.  

correlation DTM ERC READ WORD 
p- and b-values -.94 -.88 -.98 -.74 
rbis and a-values .82 .73 .84 .82 
F and M est. b .89 .93 .92 .85 
F and M est. a .91 .83 .76 .77 

Discussion 

The results from these attempts to fit a three-parameter logistic IRT model separately to each 
one of the five sub-tests in SweSAT, are somewhat mixed. The results from the initial CTT 
analyses gave support for the need of a three-parameter model for all the five sub-tests. The 
factor-analyses gave support for unidimensionality in the DS sub-test, for which the first 
factor could explain 21.7 per cent of the test variance. For the other sub-tests the support from 
the factor analyses for unidimensionality was weaker: 19.4 percent explained variance by the 
first factor for the sub-test ERC, 16.4 percent for the sub-test DTM, 15.4 percent for the sub-
test WORD, and 14.5 percent for the sub-test READ. When the explained variance is less 
than 20 percent, it is uncertain whether the test can be claimed to be unidimensional. 

The assumption of local independence is also problematic at least for three of the SweSAT 
sub-tests. The READ sub-test consists of four texts with five questions in relation to each 
text. Even though these five items are independent of each other they belong to the same text. 
The DTM sub-test consists of ten figures, tables and maps with two questions to each graph. 
The ERC sub-test consists of a varying number of texts with two to five questions to each 
text. It is doubtful whether the items actually are locally independent in tests of this format.       

Another problem is the different results from the two statistical tests. As a rule more items 
were found to have statistically significant model data misfit by the BILOG-program than by 
the RESID-program, and this could at least partly be explained by the fact that BILOG 
divides into more ability groups than RESID. However, some of the items, which were found 
to have significant model data misfit by RESID, were not found so by BILOG. This was true 
for two items in the DS sub-test, two in the DTM sub-test, one in the ERC sub-test, two in the 
READ sub-test, and three in WORD sub-test.  

So far the analyses performed have neither fully confirmed nor completely rejected model 
data fit of the three-parameter logistic IRT model to SweSAT data. 
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II. Comparison between item analysis based on Item Response Theory and 
on Classical Test Theory 

As for all high-stake tests, the pilot- or pre-testing of items for SweSAT is a crucial part of the 
test development process. The pre-testing of items has several purposes (Henrysson, 1971) of 
which the most important for SweSAT are: 

• To determine the difficulty of each item so that selection may be made, that will give a 
difficulty level of the sub-test, which is parallel to earlier versions of the same sub-test. 

• To identify weak or defective items with non-functioning distractors. 

• To determine for each item its power to discriminate between good and poor examinees 
in the achievement variable measured. 

• To identify (gender) biased items.  

Ever since SweSAT first was taken into use in spring 1977, the development and assembly of 
the test, as well as the equating of different forms from one administration to the next, has 
been based on classical test Theory (CTT). On the basis of the data obtained in the pre-test the 
items are rejected or selected for the final test, and the statistics which are used in the item 
analysis are: 
p-values of the items 
p-values of the distractors 
biserial correlations (rbis) 
p-values of males and females 
the item test regression 

The major limitation of CTT in this regard is that the person statistic (i.e. the test score) is 
dependent on the sample of items (i.e. the test), and the item statistics are dependent on the 
sample of examinees. The primary argument for the use of IRT models over CTT procedures 
is that IRT should result in sample free measurements. With IRT a person should theoretically 
receive the same estimate of ability, regardless of the test given, and item statistics should 
remain stable across different groups of individuals. Hence the great advantage of IRT is the 
item parameter invariance. One drawback of IRT is that big sample sizes are needed for the 
estimation of parameters. 

IRT has been vigorously researched by psychometricians, and numerous books and articles 
have been published (Fan, 1998). The empirical studies available, however, have primarily 
focused on various applications of IRT, and very few studies have actually compared CTT 
and IRT for item analysis and test design. Fan (1998) continues: 
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It is somewhat surprising that empirical studies examining and/or comparing the 
invariance characteristics of item statistics from the two measurement 
frameworks are so scare. It appears that the superiority of IRT over CTT in this 
regard has been taken for granted in the measurement community, and no 
empirical scrutiny has been deemed necessary. The empirical silence on this issue 
seems to be an anomaly. (p. 361) 

Since spring 1996 pre-testing of items for SweSAT has been performed in connection with 
the regular test administration, which means that the examinee sample, on which the pre-
testing is performed, is a sample from the true examinee population and it contains 1000 
examinees as a minimum. This new procedure for pre-testing would make possible the use of 
IRT for item analysis and compilation of new test versions. 

Aim 

The purpose of this study was to compare the item statistics from the CTT framework with 
the item parameters from the IRT framework, and to examine the stability from pre-testing to 
regular testing of the two sets of item characteristics. Specifically the following questions 
were addressed: 

1. How do item difficulty indices from CTT compare to item difficulty parameters estimated 
by IRT? 

a) for pre-test data? 
b) for regular test data? 

2. How do item discrimination indices from CTT compare to item discrimination parameters     
estimated by IRT? 

a) for pre-test data? 
b) for regular test data? 

3. How stable are the CTT item indices from pre-test data to regular test data? 

4. How stable are the IRT item parameters from pre-test data to regular test data? 

Method 

Classical test theory 

In the regular test in spring 1997, there were 20 WORD, 16 READ, and 14 ERC items, which 
had been pre-tested in spring 1996. For these items p-values and biserial correlations were 
calculated. The same indices were calculated for the corresponding items in the pre-test data, 
and the values were compared.  
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Item response theory 

The five WORD pre-test combinations, on which the above-mentioned 20 WORD items had 
been dispersed, were run in BILOGW together with the regular WORD test from spring 1996, 
and the a-, b- and c-parameters were estimated. The WORD sub-test from spring 1997 was 
also run in BILOGW, and the item parameters were estimated. Finally the parameters 
estimated for the 20 common items were compared. 

The eight READ pre-test versions from spring 1996 were run in BILOGW together with the 
regular READ sub-test from spring 1996, and the a-, b-, and c-parameters were estimated. 
The READ sub-test from spring 1997 was run in BILOGW and the item parameters were 
estimated. The parameter estimates for the 16 common items were noted and compared. 

The four ERC pre-test versions spring 1996 were run in BILOGW together with the regular 
ERC sub-test from spring 1996, and the a-, b- and c-parameters were estimated. The ERC 
sub-test from spring 1997 was run in BILOGW and the item parameters were estimated. The 
item parameter estimates for the 14 common items were noted and compared.   

Results 

One problem when analyzing the stability of the item parameters is that pre-testing has two 
purposes. One purpose is to get information about the difficulty level and discrimination 
power of the items in order to be able to compile tests of equal difficulty. The other purpose is 
to make sure that all items function in a satisfactory way. If an item is not working well 
enough it will be changed or excluded. If there are major changes the item will be pre-tested 
once more before it is taken into use, but if the changes are minor the item will be used in the 
regular test. Such changes, however, mean that the items are not exactly the same in the pre-
test version as in the regular test. Another problem is that items may be placed in different 
order in the pre-test booklet and the regular test booklet, and items tend to become more 
difficult in the end of the booklet. In Tables 3 to 5 the placement of the item in the pre-testing 
booklet as well as in the regular test are given, and items for which minor changes had been 
made between the two occasions are marked with *.  

The WORD sub-test   

In Table 3 the difficulty and discrimination indices calculated within the CTT framework are 
shown for 20 WORD-items from the pre-testing as well as from the regular test. In the same 
Table the difficulty and discrimination parameters estimated within the IRT framework are 
presented.  
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Table 3.  Item characteristics for 20 WORD items calculated within the framework of 
CTT and estimated within the framework of IRT. 

Item No CTT difficulty IRT difficulty CTT discrimin IRT discrimin 
pre-test  reg. test pre-test reg. test pre-test reg. test pre-test reg. test pre-test  reg. test

8 1* .73 .71 -.43 -.43 .60 .58 1.29 1.14 
20 4* .79 .72 -.96 -.64 .46 .41 .73 .62 
39 5* .78 .74 -1.94 -1.19 .25 .33 .32 .43 
18 9 .68 .71 -.25 -.59 .44 .43 .71 .63 
36 10* .75 .72 -.92 -.81 .50 .53 .72 .78 
27 11* .80 .82 -1.49 -1.79 .35 .35 .48 .46 
36 15* .71 .58 -.55 .11 .40 .37 .59 .55 
14 16* .65 .70 -.02 -.65 .44 .48 .81 .72 
5 19 .46 .42 .46 .71 .42 .37 .55 .50 
16 23 .65 .62 .11 .08 .35 .40 .58 .72 
38 24 .58 .56 .08 .16 .47 .30 .75 .40 
12 25 .51 .59 .17 -.02 .58 .58 .97 1.13 
24 27 .69 .66 .37 .33 .36 .35 1.07 .83 
4 28* .53 .44 .35 .51 .56 .52 1.55 1.04 
4 29 .42 .42 1.16 1.08 .33 .26 .71 .61 
5 35* .31 .38 1.59 .89 .32 .46 .45 .95 
37 36* .71 .62 -.37 -.07 .43 .44 .70 .70 
6 38* .41 .46 1.25 .49 .31 .37 .70 .48 
28 39* .27 .40 1.61 1.22 .28 .32 1.13 1.18 
39 40* .31 .31 2.27 2.45 .23 .21 .42 .45 

 

The correlation between p-values calculated on pre-test data and p-values calculated on 
regular test data was r = .93. 

The correlation between b-values estimated on pre-test data and b-values estimated on regular 
test data was r = .92. 

The correlation between p- and b-values was r = - .93, for the pre-test data as well as for the 
regular test data. 

The correlation between rbis calculated on pre-test data and rbis calculated on regular test data 
was r = .81 

The correlation between a-values estimated on pre-test data and a-values estimated on regular 
test data was r = .74. 

The correlation between the item discrimination rbis and the item discrimination parameter a 
was r = .65 for the pre-test data and r = .64 for the regular test data. 
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The Read sub-test. 

Table 4.  Item characteristics for 16 READ items calculated within the framework of CTT 
and estimated within the framework of IRT. 

ItemNo CTT difficulty IRT difficulty CTT discrim. IRT discrimin. 
pre-test reg. test pre-test reg. test pre-test reg. test pre-test reg-test pre-test reg-test 

5 5 .74 .74 -.61 -.69 .30 .32 .50 .59 
7 6* .30 .68 2.16 -.52 .23 .36 .46 .64 
6 7 .78 .71 -1.16 -.45 .37 .38 .54 .73 
8 8 .80 .81 -1.31 -1.09 .40 .35 .59 .63 
17 9 .64 .81 .37 -.88 .37 .43 .85 .90 
20 10 .52 .69 1.32 .27 .25 .22 .64 .42 
17 11 .61 .75 1.42 -1.20 .18 .11 .52 .37 
20 12 .45 .52 1.92 .71 .17 .33 .72 .86 
14 13 .59 .66 .48 -.14 .35 .36 .83 .69 
15 14* .36 .50 1.85 .74 .24 .30 .53 .72 
14 15* .24 .30 1.67 1.08 .34 .43 .87 1.23 
16 16* .28 .57 2.54 .33 .17 .28 .59 .54 
17 17* .35 .53 1.33 .51 .35 .36 .72 .69 
19 18 .63 .76 .82 -.77 .29 .32 .76 .60 
19 19 .56 .65 .84 .04 .29 .31 .69 .70 
20 20 .57 .60 .38 .22 .34 .34 .57 .91 

 

The correlation between p-values of the items in the pre-test versions and p-values of the 
corresponding items in the regular test was r = .78. 

The correlation between b-values estimated on pre-test data and b-values estimated on regular 
data was r = .55. 

The correlation between p-values calculated on pre-test data and b-values estimated on pre-
test data was r = -.90. 

The correlation between CTT and IRT regarding difficulty indices on regular test data was r = 
-.92. 
 
The correlation between rbis of the items in the pre-test versions and rbis of the corresponding 
items in the regular test was r = .66.  

The correlation between a-values estimated on pre-test data and a-values estimated on regular 
test data was r = .54. 

The correlation between CTT and IRT discrimination indices on pre-test data was r =.35. The 
correlation between CTT and IRT discrimination indices on regular test data was r = .78.  
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The ERC sub-test 

Table 5.  Item characteristics for 14 ERC items calculated within the framework of CTT 
and estimated within the framework of IRT. 

 
Item No CTT difficulty IRT difficulty CTT discrimin. IRT discrimin. 
pre-test reg. test pre-test reg. test pre-test reg. test pre-test reg. test pre-test  reg.test 
1 1 .33 .38 1.65 1.31 .30 .33 .59 .79 
2 2 .72 .66 .20 .34 .34 .33 .83 .76 
3 3 .35 .29 1.70 1.74 .28 .29 -.72 .71 
4 4 .41 .47 .83 .54 .45 .47 .76 .83 
5 5* .62 .73 .78 .35 .16 .54 .27 1.05 
1 6 .77 .78 -.90 -.62 .62 .54 1.00 1.10 
2 7 .54 .50 .09 .49 .48 .46 .67 .81 
3 8 .53 .53 .77 .63 .37 .42 .90 .99 
11 9* .41 .60 .81 -.07 .41 .38 .56 .55 
5 10 .67 .58 -.52 .19 .57 .51 .84 1.02 
14 12 .60 .51 -.13 -.10 .51 .46 .71 .73 
13 13 .68 .62 -.27 -.03 .56 .56 .96 1.10 
14 14 .65 .65 -.40 -.19 .57 .52 .85 .91 
10 15 .77 .74 -.85 -.52 .52 .52 .80 .95 

The mean of p-values was .58 for the pre-test data as well as for the regular test. The 
correlation between p-values of items in the pre-test versions and p-values from the 
corresponding items in the regular test was r = .86. 

The mean of b-values was .27 for the pre-test items and .29 for the regular test items. The 
correlation between b-values estimated on pre-test data and b-values estimated on regular test 
data was r = .88.  

The correlation between rbis of the items in the pre-test versions and rbis of the corresponding 
test items in the regular test was r = .57. 

The correlation between a-values estimated on pre-test data and a-values estimated on regular 
test data was r = .34.  

For the 12 items, which had not been changed between pre-test and regular test, the 
correlation was r = .95 for the p-values, and r = .96 and ρ = .94 for rbis. 

For the 12 unchanged items the correlation between b-values from pre-test and regular test  
was r = .96, and between a-values r = .82. 

The correlation between CTT difficulties and IRT difficulties was r = -.90 for pre-test data as 
well as for regular test data. The correlation between discriminations calculated within CTT 
and estimated within IRT was r = .74 for pre-test data and r = .76 for regular test data. 

The results for the three sub-tests are summarized in Table 6. 
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Table 6.  Stability of CTT item indices, and IRT item parameters from pre-test to regular 
test versions. Relations between CTT item indices and IRT item parameters on 
pre-test and regular test. 

sub-test pre- and reg. test pre- and reg. test p- and b-values rbis and a-values 
 p b rbis a pre reg. pre reg 
ERC .86 (.95) .88 (.92) .57 .74 -.90 -.90 .74 .76 
READ .78 .55 .66 .54 -.90 -.92 .35 .68 
WORD .93 .92 .81 .74 -.93 -.93 .64 .65 

 

Discussion 

For the WORD and READ sub-tests (the three-parameter logistic model) none of the pre-test 
items was identified as significantly misfitting to the three-parameter logistic model. For three 
pre-test items in the ERC, however, there was misfit, which was significant at α = .01 level.  
In the regular sub-tests there was one item in the WORD sub-test, one in the READ sub-test, 
and two in ERC sub-test, for which there was a model data misfit, which was significant at α 
= .01 level. These items were No 10 in the regular WORD sub-test, and No 11 in the regular 
READ sub-test and items No 9 and 14 in the ERC sub-test. 

The overall conclusion of the studies is that the agreement between results from the item-
analyses within the two different frameworks CTT and IRT was reasonably good. The 
correlation between item difficulties for the regular test versions was r = -.93 for the WORD 
sub-test,  r = -.92 for the READ sub-test, and r = -.90 for the ERC sub-test. 

Regarding the stability from pre-test to regular test data there were no great differences 
between the two theories. For the WORD sub-test agreement between difficulties in pre-test 
and regular test was r = .93 within CTT and r = .92 within IRT. For the READ sub-test the 
correlation between CTT difficulties was r = .78 and between IRT difficulties the correlation 
was r = .55. For the ERC sub-test the correlation within CTT was r = .87 and within IRT r = 
.88.  On the whole the correlations between item difficulties in pre-test and regular test data 
were actually higher for the CTT indices than for the IRT parameters. 

Because IRT differs considerably from CTT in theory, and commands some 
crucial theoretical advantages over CTT, it is reasonable to expect that there 
would be appreciable differences between IRT- and CTT-based item and person 
statistics. Theoretically such relationships are not entirely clear, except that the 
two types of statistics should be monotonically related under certain conditions 
(Crocker & Algina, 1986, Lord, 1980) but such relationships have rarely been 
empirically investigated, and, as a result they are largely unknown. (Fan, 1998, p. 
360) 

The overall conclusion from these comparisons is that the prediction from pre-test data to 
regular test data is acceptable, but that is true for CTT as well as for IRT. Actually the 
predictions made within the CTT framework were generally more correct than the predictions 
made within the IRT framework. The IRT item parameters were not completely invariant. 
Since the groups on which the pre-testing had been performed were large and representative 
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samples from the actual examinee population this outcome may be expected. The dilemma is, 
however, that in order to be able to estimate the item parameters within the IRT framework, 
large samples are a necessity, and when the samples are large enough the item indices within 
the CTT framework are very stable as well.  

What is usually regarded as the main shortcoming of CTT is that item statistics, such as item 
difficulty and item discrimination depend on the particular examinee sample in which they are 
obtained. The invariance of the corresponding IRT item statistics across samples is usually 
considered as the main theoretically superiority. The invariance of item parameters across 
groups is one of the most important characteristics of item response theory (Lord, 1980, p. 
35). In the studies reported here the item parameters estimated within the IRT framework 
were not superior to the statistics derived within the CTT framework regarding invariance 
across groups. The problem may be that in order to achieve this invariance of IRT parameters, 
there must be perfect model-data fit. Unfortunately there are no objective criteria on model 
data fit, but according to Hambleton et al. (1991) ...invariance and model data fit are 
equivalent concepts (p. 24).   
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III. Applicability of IRT to the SweSAT: the total test     

SweSAT is scored in accordance with classical test theory (CTT), the raw score for each 
examinee is the number of items answered correctly. All items are of multiple choice format 
and scored dichotomously, i.e. “1” for a right answer and “0” for a wrong one. It has been 
found that on this kind of items examinees differ in their tendency to guess, or to omit items, 
for which they do not know the correct answer, and this may cause irrelevant variance. 
Several methods have been invented to correct for the effect of guessing, but empirical studies 
have not supported the use of correction methods (Crocker & Algina, 1986, p.403). The 
SweSAT test-takers are encouraged to mark every item. The total test score is equated and 
transformed to a normed score, and this normed score is used in selection to higher education.    

SweSAT consists of five sub-tests measuring, word knowledge (WORD), logical thinking 
(DS) Swedish reading comprehension (READ), English reading comprehension (ERC), and 
the ability to interpret diagrams, tables and maps (DTM). In earlier studies the applicability, 
of a three-parameter logistic IRT-model, was investigated for each sub-test (Stage, 1996, 
1997a, 1997b, 1997c, 1997d). The outcome of these studies was neither a confirmation nor a 
rejection of model data fit of the three-parameter logistic IRT model to the SweSAT data.  

Since it is the total test score that constitutes the result for the SweSAT examinees, the 
applicability of an appropriate IRT-model to the total test is of importance. In this study the 
aim was to investigate whether a three-parameter logistic IRT-model could be successfully 
applied to the total test. 

The three-parameter model was chosen, since it had turned out to be the most appropriate 
model for each of the sub-tests. There was no reason to believe that the total test should be 
different from its parts regarding the need of a discrimination parameter as well as a pseudo 
guessing parameter.  

Unidimensionality 

An un-rotated factor analysis of the total test scores resulted in a first factor of 12.1, a second 
factor of 3.7, a third factor of 2.0, and 34 factors above 1.0. The first factor explained 9.9 
percent of the variance, the second factor 3.0 per cent and the remaining factors from 1.7 to 
0.8 per cent each. In Figure 3 a plot of the eigenvalues are shown.  
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Figure 3.   Plot of eigenvalues for the total SweSAT test 

In Figure 3 it may be seen that even though there is a kind of “elbow” in the graph, and the 
first factor is dominant the assumption of unidimensionality is uncertain, since the second 
factor is somewhat too strong.  

A factor analysis was also performed on sub-test level. This analysis resulted in a first factor 
with eigenvalue 3.05, a second factor with eigenvalues 0.83, a third with 0.41, a fourth with 
0.38, and a fifth factor with eigenvalue 0.35. The first factor explained 61 per cent of the 
variance. This analysis gave more support for unidimensionality. 

The three-parameter logistic model 

The program BILOGW was used to fit the test results of the SweSAT to the three-parameter 
logistic IRT model. The outcome of the goodness of fit analysis of the items was that for 67 
items there was a model data misfit which was significant at the α = .05 level, and for 44 of 
these items the misfit was significant at the α = .01 level. The program was run on 28 505 
test-results, and since statistical tests of model fit are very sensitive to sample size, such 
results were to expected. This is what Hays (1969) calls the fallacy of evaluating a result in 
terms of statistical significance alone: 

Virtually any study can be made to show significant results if one uses enough 
subjects, regardless of how nonsensical the content may be. (p. 326)  

The program was also run on two different random samples of 1000 test-results. For the first 
sample the number of items for which there was significant misfit had decreased to seven, and 
for four of these items the misfit was significant at the α = .01 level.  For the second sample 
the number of significantly misfitting items was only six, none of which was significant at α = 
.01 level.  

A residual analysis was made on the whole population with the program RESID, and this 
analysis resulted in only 10 items with significant model data misfit, three of which were at α 
= 0 .01 level. Six of these items did not, however, have significant model data misfit 
according to BILOGW.  
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The standardized residuals (see p. 8 for explanation) were distributed: 

SRs percent 

 0 – 1  73.91 
 1 – 2  23.91 
 2 – 3    1.88 
  > 3      0.31 
 

Since the distribution of SRs is very close to the normal distribution there is support for 
model data fit, by the residual analysis. 

Comparison between item statistics  

The correlation between CTT p-values and IRT b-values was r = -.84, and between CTT rbis 
and IRT a-values the correlation was r = .63. The correlation between CTT test scores and 
IRT ability estimates was r = .96. In Figure 4 the b-values are plotted against the p-values. 

Figure 4. Scatter-plot of IRT b-values against CTT p-values. 

In Figure 4 it looks like there is a curvilinear relationship between b- and p-values. Since p-
values actually expresses item difficulty on an ordinal scale, a transformation was made to an 
interval scale by normalization (see e. g. Aiken, 1991, p. 96). This normalization only raised 
the correlation between b- and p-values to r = .85, however.  

In order to further investigate the parameter invariance two different random samples, of 1000 
individuals each, were taken from the population of test-takers. For each sample the CTT item 
statistics were calculated and the IRT item parameters were estimated. Comparisons were 
made between p-values and biserial correlations from the two samples and between b-values 
and a-values. Comparisons were also made with the same values from the population. The 
outcome of these comparisons are shown in Table 7.  
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Table 7.  Stability of item statistics from the two measurement frameworks. Correlations 
between CTT and IRT based item difficulties and item discriminations  

correlation between population–sample A population–sample B sample A – sample B 
p-values .995 .996 .989 
b-values .940 .946 .960 
rbis .931 .957 .882 
a-values .764 .775 .683 

 

Discussion 

These attempts to fit a three-parameter logistic IRT model to the SweSAT test, given in fall 
2002, were not very successful. It is difficult to get an unequivocal answer regarding model 
data fit, since there are no objective criteria. However, the factor analysis on item level was 
discouraging, and so was the BILOGW chi-square test on the total population of test-takers. 
On the other hand, the RESID test was encouraging, and so was the BILOGW, chi-square 
tests on two samples of 1000 test-takers each. The item-parameters, however, were not 
invariant, and according to Hambleton et al. (1991)…invariance and model data fit are 
equivalent concepts (p. 24). Therefore the conclusion must be that the three-parameter logistic 
model did not fit the SweSAT data.  

On the other hand the results from CTT analyses were quite encouraging. The item difficulty 
indices as well as the item discrimination indices were very stable between the two random 
samples, as well as between the population and the two samples. 
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Concluding remarks 

Since SweSAT has been developed within the framework of CTT it has seemed reasonable to 
compare the outcomes of the IRT analyses with the corresponding outcomes within the CTT 
framework.  Empirical comparisons between results from the two theories are not very 
common. Lawson (1991) compared the one-parameter model and CTT on three data sets and 
found …remarkable similarities between the results obtained through classical measurement 
methods and results obtained through one-parameter latent3 trait methods (p. 163). Fan 
(1998) examined items and person statistics derived from IRT and CTT on a large-scale 
statewide assessment database. His findings indicated that the person and item statistics 
derived from the two measurements frameworks were quite comparable. He also found that 
the invariance of item statistics across samples, which is usually considered to be the 
superiority of IRT models, appeared to be similar for the two measurement frameworks. Both 
Lawson (1991) and Fan (1998) conclude their articles by quoting from Thorndike’s opening 
speech, in 1982, at an Australian Conference, focused on IRT models: 

For the large bulk of testing, both with locally developed and with standardized 
tests, I doubt that there will be a great deal of change. The items that we will 
select for a test will not be much different from those we would have selected with 
earlier procedures, and the resulting test will continue to have much the same 
properties. (p. 12)   

In the studies reported in this paper, the CTT item indices were not only comparable to the 
IRT item parameters, they were generally more invariant between different samples of test-
takers. One possible explanation for these results is that the IRT model did not fit the test 
data. But even if the results are due to poor model data fit, the only reasonable conclusion is 
that for SweSAT data, CTT seems to work better than IRT. 

SweSAT is well accepted by Swedish test-takers as well as by universities. The most 
important demand on the test is that it should rank test-takers as fairly as possible with regard 
to their expected study success. Other requirements on the test are that: 

• The test should be in line with the aims and content of higher education 
• The test must not have negative effects on the education in upper secondary school. 
• It should be possible to score the test fast, cheaply and objectively 
• It should not be possible for an individual to improve her/his result by means of 

mechanical exercises or by learning special principles for problem solving. 
• The test-takers should experience the test as meaningful and suitable. 
• The demand for unbiased recruitment should be observed. No group should be 

discriminated against because of, e.g., gender or social class. 

                                                 

3 IRT models are sometimes called latent trait models 
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All changes, which could improve the test in any of these aspects, are worth striving for. That 
would, however, be a matter of changes, which would improve the validity of the test. The 
main goal of any change must surely be this, to improve the validity of the test, rather than to 
make it fit a specific test theory.  

IRT consists of a family of models that have been argued to be useful in the design, 
construction and evaluation of educational tests. As further research is carried out, the 
remaining technical problems associated with applying the models will hopefully be resolved. 
In addition it is expected that newer and more applicable models will be developed in the 
coming years, enabling IRT to provide even better solutions to important measurement 
problems  (Hambleton et al., 1991). As mentioned earlier one important assumption of IRT 
models is unidimensionality, which means that the items in a test measure one single ability. 
There are models in which it is assumed that more than one ability is necessary to account for 
the performance on a test. These so-called multidimensional models are, however, more 
complex, and have not been as well developed as the unidimensional models. 

Although at present IRT does not seem to be applicable for the construction and design of 
SweSAT, work is underway to investigate whether IRT can be used for the equating of 
different test versions. Emons (1998) made a thorough study, “Nonequivalent groups IRT 
observed score equating. Its applicability and appropriateness for the Swedish Scholastic 
Aptitude Test”, in which he used items, which had been pre-tested in spring 1996 as anchor 
items for equating the spring 1997 test. In this study, however, the number of anchor items 
may have been too few to constitute a proper link for the equating. For some sub-tests the link 
consisted of only 2 or 3 items. Similar studies are continuously carried out, and at present the 
outcomes of the traditional “equivalent groups equipercentile equating” method are 
continuously compared to IRT equating with links of different sizes. 

Another area of studies on SweSAT where IRT models are presently used is for studying 
differential item functioning (DIF). The item characteristics curves, in a very good way, 
illustrate the DIF problem, since the curves show the probability to give a correct answer to 
an item, given a certain ability level. The comparison of the curves for different groups of 
test-takers (for SweSAT mainly males and females) exactly corresponds to the most accepted 
definition of DIF. For these kinds of studies the sub-test score can be used, and on sub-test 
level the unidimensionality seems to be an acceptable assumption.  

Finally, in the case of computerized adaptive testing (CAT) or tailored tests, IRT is the only 
proper theoretical framework. In CAT, which items a test-taker gets depends on his/her 
performance on the earlier items in the test. Only the items that are most informative about 
the test-taker are administered. High-ability test-takers do not need to get the very easy items, 
and low ability test-takers do not need to get the very difficult items. In this way the test can 
be shortened considerably, and still give the same information and the same measurement 
precision as a longer conventional test. If, in the future, SweSAT, or some version of 
SweSAT, should become transformed to CAT, then the application of IRT will be a necessity.    
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