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The Swedish Scholastic Aptitude Test is a norm-referenced test, which is used for selection to
higher education in Sweden. The test is administered twice a year, once in Spring and once in
Fall. The number of examinees in the Spring administration is usually 75,000 and in the Fall
administration the number is normally 55,000. After each administration that particular test is
made public and therefore a new version must be constructed for each administration. A test
result is valid for five years and hence it is important that results from different
administrations are comparable.

The test was changed in 1996 and now consists of 122 multiple-choice items, divided into five
subtests:

1. DS a data sufficiency subtest consisting of 22 items
2. DTM a subtest measuring the ability to interpret diagrams tables and maps with 20

items
3. ERC an English reading comprehension subtest, consisting of 20 items
4. READ a Swedish reading comprehension subtest which consists of 20 items
5. WORD a vocabulary subtest consisting of 40 items.

On the DS, DTM and WORD sub-tests there are five response alternatives, one of which is
correct. On the ERC and READ subtests there are four response alternatives, one of which is
correct.

Since the SweSAT was first taken into use in 1977, the development and assembly of the test
as well as the equating of forms from one administration to the next has been based on
classical test theory. The SweSAT is of high quality and is generally well accepted. There are,
however, some shortcomings with classical test theory. One shortcoming is that item difficulty
and item discrimination indices are group dependent; the values of these characteristics
depend on the examinee group in which they have been obtained. Another shortcoming is that
observed and true test scores are test dependent. Observed and true scores rise and fall with
changes in test difficulty. A third shortcoming has to do with the assumption of equal errors of
measurement for all examinees. Unfortunately, the ability estimates are in fact less precise
both for low and for high ability students than for students of average ability.

During the last decades a new measurement system, item response theory (IRT), has been
developed and has become an important complement to classical test theory in the design,
construction and evaluation of tests. Within the framework of IRT it is possible to obtain item
characteristics which are not group dependent, ability scores whic are not test dependent and a
measure of precision for each ability level.
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According to Hambleton et. al. (1991):

    IRT rests on two basic postulates: a) the performance of an examinee on a test
item can be predicted (or explained) by a set of factors called traits, latent traits
or abilities; and b) the relationship between examinees´ item performance and the
set of traits underlying item performance can be described by a monotonically
increasing function called an item characteristic function or item characteristic
curve. This function specifies that as the level of the trait increases, the
probability of a correct response increases. (p 7)

There are several different IRT models but they all have in common that they use a
mathematical function to specify the relationship between observable examinee test
performance and the unobservable traits or abilities assumed to underlie performance on the
test. In any practical application of latent trait models one must specify the mathematical form
of the item characteristic curves and obtain estimates of the item parameters needed to
describe the curves. In the three parameter model these parameters are a) item difficulty, b)
item discrimination and c) a parameter for guessing. In the two parameter model no guessing
is supposed to exist, while in the one parameter model item discrimination is assumed to be
the same for all items.

Once a latent trait model is specified, the precision with which it estimates examinee ability
can be determined for different ability levels. The information varies with ability level, which
makes it possible to determine the standard error of estimate for different ability levels. The
item information function gives information of the usefulness of the item in measuring ability
at a particular ability level.

Presently IRT is receiving increasing attention from test agencies in test-design, test-item
selection, in addressing item-bias and in equating and reporting test scores. The potential of
IRT for solving these kinds of problems is substantial. In order to achieve the possible
advantages of using an IRT model it is, however, essential that there is a fit between the item
response model and the test data of interest.

If IRT model fit can be established, such models would be especially useful to the SweSAT
program in equating forms from one administration to the next. IRT equating is less
cumbersome to carry out than classical equating procedures and considerably more flexible in
its application. It would also be possible to improve the test design and the investigations of
item-bias.

The study reported here is a first attempt to investigate the possibility to fit an IRT model to
SweSAT data.

The specific purpose of this study is to investigate the fit of two popular IRT models to the
student response data from the DS subtest of the SweSAT. Specifically, fit will be
investigated by three kinds of evidence: evidence addressing model assumptions, model
parameter invariance, and actual fit between particular models and the student response data.
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METHOD

Sample
From the 82,506 test-takers in the administration of the SweSAT in Spring 1996 a random
sample of three percent was drawn. The resulting sample consisted of 2,461 test-takers. The
results of these test-takers on the DS subtest is the data which will be analysed in different
ways.

Analyses

Classical item analysis
The classical item analysis of the subtest DS showed a range of p-values from .40 to .81 and a
range of biserial correlations from .25 to .70. The reliability coefficient alpha was r = .82.

The range of the biserial correlations indicates that there is a substantial variation in the
discrimination of the items in the test. Sometimes though the range may be deceptive because
of a couple of ”outliers”. Also, high biserial correlations are sometimes associated with very
easy items. These item discrimination indices do not really reveal effective items. The
distribution of biserial correlations and the corresponding p-values and vice versa is presented
in table 1.

Table 1.   Range of p-values and corresponding biserial correlations in the subtest DS

     p-values                      corr. rbis          rbis                  corr. p-values
range           n  range          n
     < .50        4 .25 - .51 .25 - .30        2     .40 - .64
.51 - .60        4 .38 - .55 .31 - .40        3     .40 - .80
.61 - .70        7 .28 - .70 .41 - .50        4     .49 - .73
.71 - .80        4 .49 - .69 .51 - .60      11     .40 - .82
     > .81        3 .40 - .60 .61 - .70        2     .60 - .74

The values in Table 1 give support to the assumption that there really is true variation in the
discriminatory power of the items in the test. There does not seem to be any connection
between very easy items and high biserial correlations. The conclusion is that there seems to
be a need for an item discrimination parameter and, therefore, the one parameter IRT model
seems unsuitable for these results.

To make a rough examination of whether guessing was a factor in the test, the test-takers with
the lowest results were studied. All test-takers with a total score of less than 8 were selected,
giving a total of 193. The results of these test-takers were examined on the eight most difficult
items of the test. The resulting p-values for this group of 193 test-takers on these eight items
were:

p = .11, .30, .08, .14, .20, .13, .11 and .17.
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This result indicated that guessing cannot be excluded and, therefore, the two-parameter-
model appears unsuitable.

An assumption common to most IRT models is that the set of test items is unidimensional.
There are various methods for determining unidimensionality, as well as different definitions
of the concept. The crucial meaning in this context is that only one ability is measured by the
items in the test, i.e. all the items in the test measure just one thing in common. According to
Hattie (1985) the most widely used index of unidimensionality has probably been coefficient
alpha (internal consistency), which was r = .82 for this subtest. There are, however, several
problems with the use of alpha as an index of unidimensionality. A more appropriate method
for assessing the unidimensionality is factor analysis (Hambleton & Rovinelli, 1986).

Factor analysis
For this sample of 2,641 examinees an unrotated factor analysis resulted in three factors with
eigenvalues 4.77, 1.21 and 1.09 respectively. The variance explained by the first factor was
21.7 percent, the variance explained by the second factor was 5.5 percent and the variance
explained by the third factor was 5.0 percent. All items, however, had substantial loadings on
the first factor (between .24 and .64). A plot of the eigenvalues is shown in Figure 1.
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Figure 1.   Plot of Eigenvalues

Clearly, there is a dominant first factor, which accounts for 21.7 per cent of the total variance.
Even if there may be a second and a third factor they do not seem to be much different from the
remaining factors. Assuming a single factor does not seem unreasonable from these results, so
the assumption was made that the subtest DS is unidimensional.

The one-parameter logistic model
In spite of the wide range of biserial correlations as well as the clear indication of guessing
existing in the test, an attempt was made to fit the one-parameter logistic model to the data. If
sufficient fit to the data can be established it is advantageous to use a simple model, as fewer
estimations are needed. The resulting approximate chi-square statistics for the goodness of fit,
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however, showed that for 20 of the 22 items there was a significant misfit between the one
parameter model and the data.

The approximate chi-square values for each item are presented in Table 3, page 8, where a
discussion of the usefulness of statistical significance tests in assessing goodness of fit, also
may be found.

The three-parameter logistic model
The next step was to estimate three item parameters and the ability parameters for the three-
parameter logistic model. A summary of the results with the three-parameter model was that
the approximate chi-square-statistics for the goodness of fit were < 10 for 3 items, < 20 for 16
items and < 30 for 20 items. The remaining two items had chi-square statistics of 30.5 and
37.6 respectively. The approximate chi-square statistics for each item are found in Table 3,
page 8.

The three-parameter logistic model with item parameters estimated on a
smaller sample
To examine the consistency of the item parameter estimates over different samples and
sample sizes a random sample of 1000 examinees was drawn from the same population.

A summary of the results was that the approximate chi-square statistics were < 10 for 11
items, < 20 for 19 items and < 30 for all the 22 items. The chi-square statistics for each item
are presented in Table 3, page 8.

Plots of estimated item parameters
In Figure 2 a plot is shown of the b-values estimated in the three paramater analyses on the
two different sample sizes. As may be seen in Figure 2 a plot of the b-values from the two
analyses gave an almost perfect straight line; the correlation between the b-values was r = . 99

In Figure 2 a plot of the a-values from the two analyses may also be found; the correlation
between the a-values was r = .95.
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Figure 2.   Plots of b-values (left) and a-values (right) estimated on samples of 1000
examinees and 2,461 examinees respectively



6

The plots in Figure 2 show that a sample of 1000 examinees seems to be sufficient to produce
stable item parameter estimates.

In Figure 3 the b-values are plotted against the p-values from the classical item analysis and
the a-values are plotted against the biserial correlations from the classical item analysis. The
correlation between the b-values, from the three-parameter model and the p-values was
r = -.93 (while the correlation between the b-values from the one-parametermodel and p-
values was r = -.99). The correlation between the a-values and the biserial correlations was r =
.72.
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Figure 3.   Plots of item parameter estimates from the three parameter model and item
indices from classical item analysis

Goodness of fit analysis with 12 ability levels
An assessment of the model-data fit of the three-parameter model was performed with the
Resid program (Rogers, 1994). 12 ability levels were chosen and the observed and predicted
proportions of examinees in each interval was compared. A summary of the results given by
Yen´s chi-square fit statistics is that the chi-square statistics were < 10 for five items, < 20 for
21 items and chi-square = 23.12 for the last item. The Yen´s chi-square fit statistics for each
item are given in Table 3, page 8.

Goodness of fit analysis with eight ability levels
In the analysis with 12 ability levels the highest ability level interval was empty and the
second highest interval contained only examinees with full scores; 12 ability levels was
evidently too many for a test as short as 22 items and with a relatively homogenous score
distribution. The same analysis was therefore rerun, but this time with only eight ability levels.
A summary of the results given by Yen´s chi-square fit statistics in this analysis was that the
chi-square statistics were < 10 for 14 items and < 20 for all 22 items. The chi-square statistics
for each item are presented in Table 3, page 8.
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Standardized residuals
Residuals provide comparisons of predicted performance results with actual performance
results. The raw residuals are the differences between expected and observed performance on
an item at a specified performance level. Standardized residuals take into account the
sampling errors associated with each expected performance level and the number of
examinees at that particular level of performance.

In Table 2 a summary of the standardized residuals from the two goodness of fit analyses is
given.

Table 2.   Summary of absolute-valued standardized residuals

res. 12 ab. levels 8 ab. levels
I 0 - 1 I      63.64      72.16
I 1 - 2 I      29.75      22.16
I 2 - 3 I        6.20        5.11
I   > 3 I          .41          .57

These standardized residuals are roughly normally distributed (with mean = 0 and standard
deviation = 1), which provides strong evidence for the model fit of the three parameter model
to the DS data.

CONCLUSIONS
In Table 3 the chi-square statistics for each of the 22 items can be compared between the
different analyses performed. The reason that most items get significant misfit with the one-
parameter model is probably that an item discrimation parameter as well as a pseudo guessing
parameter is needed for these data. The columns of main interest in Table 3 are number two,
three, four and five.

Statistical significance tests of model fit should, however, never be the sole reason for
rejecting or accepting a model. In Table 3 below the importance of the sample size is clearly
demonstrated. When the sample size was 1000 only four of the 22 items were judged as
misfitting, while 11 items were judged as misfitting when the sample size was 2,461, even
though, as could be seen in Figure 2, the estimates of the item parameters were very similar.

All the same it can be concluded from the analyses performed that the one-parameter model
does not fit the data very well. The classical item analysis also suggested the desirability of a
three parameter model to fit the data. It can also be concluded, however, that an assumption of
unidimensionality seems very reasonable. The evidence for a three parameter model fit is very
good.
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Table 3.   Chi-square statistics from different analyses

Item 1-par 3-par 3-par Res 12 ab Res 8 ab
(N=2461) (N=1000)

1   9.7  19.1*    7.6  10.5    8.1
2   17.1*  12.6    9.6  14.9    9.5
3   17.8*  20.5*  12.1  13.3  10.1
4   25.9**  30.5**  22.9**  11.4    8.3
5   28.3**  24.6**  21.3**  19.1*  17.6*
6  .8.8  16.0*  11.0  12.1    6.2
7   33.5**  37.6**  23.6*  19.2*  15.4
8 142.8**  25.2*    7.6  16.9*  10.2
9   44.7**  15.9*    6.4  11.9    9.6
10   20.4*    5.5    5.3    7.2    4.6
11   53.1**  12.8    5.7  16.3*  10.6
12   25.9**    8.9    7.2  10.3    2.7
13   52.1**  15.0  12.1    9.6    3.4
14   38.6**  13.4  15.0  10.4    2.5
15   78.8**  26.5**  15.0  23.1*  17.0*
16   51.9**  15.9*    9.7  17.6*  11.8
17 107.0*  12.3    9.6  18.4*  12.0
18   20.3*  14.7  10.0    7.9    6.3
19   38.6**  15.4    8.6    8.9    5.4
20 146.3**  19.1*  17.6*    7.1    4.0
21   27.4**  15.9  14.9  11.2    7.3
22   52.3**    7.4    5.2  12.6    8.6

Even though there seems to be a reasonably good fit between the three parameter model and
the test data, there are some problematic items. Items four, five, seven, fifteen and twenty will
be studied more closely.

The item response function and item information as well as the item fit for item four are
presented in Figure 4.

In Figure 5 the same information is presented for item five, which was another problematic
item according to the chi-square statistics in Table 3.

Another problematic item was item seven and the same information about this item is
presented in Figure 6.

The next problematic item was item 15 and the same information about this item is presented
in Figure 7.

The final problematic item according to the chi-square statistics was item 20 and the
information about this item is presented in Figure 8.
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Figure 4.   Item response function, item information and item fit for item four in the DS
subtest

It may be seen from Figure 4 that item four provides the most information about examinees
somewhat below average ability. The main misfit seems to be for low ability examinees, while
the fit for examinees above the average seems fairly good.
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Figure 5.   Item response function, item information and item fit for item five in the DS
subtest

Item five is very similar to item four; the most information is given for examinees who are
about one standard deviation below the mean, and the greatest misfit is also found for
examinees below average ability.
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Figure 6.   Item response function, item information and item fit for item number seven
in the DS subtest

Item seven has the same general appearance as items four and five. The main information is
about low ability examinees and the misfit is greatest below the average.
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Figure 7.   Item response function, item information and item fit for item 15 in the DS
subtest

Item 15 is quite different from items four, five and seven. This item seems to be a very poor
item; the information is low on all ability levels and the discriminatory power is also very low.
The misfit of the item also covers the whole ability range. This item had a low biserial
correlation in the classical item analysis as well. The conclusion is that this item should never
have been included in the test.
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Figure 8.   Item response function, item information and item fit for item 20 in the DS
subtest

Item 20 again looks quite different from the other problematic items. The information
provided by this item is very high and it is concentrated just below the mean of the ability
scale. The discriminatory power of the item is consequently also very high. The fit at the
higher ability levels seems to be reasonable and it is mainly in the low end of the ability scale
that the misfit is existing.

In Figure 9, finally, the total test information function is presented. The information given by a
test at different ability levels is the sum of the item information functions at the same abilities.
As may be seen from Figure 9 the standard error is inversely related to the information at each
ability level, i.e. the standard error is different at different ability levels (in contrast to the
standard error of measurement in classical test theory, which is assumed to be the same for all
score levels).

The reliability index was r = .84 which may be compared with coefficient alpha in the
classical analysis which was r = .82. It may be seen from the test information function,
however, that the errors are much smaller around average ability than for low or high ability
levels, but this finding is to be expected with the current approach to test design.
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Figure 9.   Test information function for the subtest DS

The results from this first attempt to fit an IRT model to response data from the SweSAT are,
on the whole, very promising. The model assumption regarding unidimensionality seems to be
met to a reasonable degree at least in this subtest. There seems to be item differences
regarding discrimination power and there also seems to be guessing going on in the subtest,
making one parameter and two parameter models unsuitable. A three parameter logistic
model, however, seems to fit the data very well. The few items which did not fit this model
very well, did not seem to be any serious threat to model usefulness or validity.

The next step will be to investigate the remaining four subtests in the SweSAT in the same
way. If all five subtests may be fitted to the same model, the test as a whole will be analysed
as a final step before it can be decided whether the SweSAT program may be improved by the
use of IRT.
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