THE APPLICABILITY OF ITEM RESPONSE MODELS TO THE SweSAT

A Study of the ERC Subtest

Christina Stage

Em No 24, 1997
This study is the third in a series of studies with the aim of fitting an IRT model to the Swedish Scholastic Aptitude Test (SweSAT).

The SweSAT is a norm-referenced test, which is used for selection to higher education in Sweden. The test is administered twice a year, once in spring and once in autumn. After each administration that particular test is made public and therefore a new version has to be developed for each administration. As test results are valid for five years it is important that results from different administrations are comparable.

Since 1996 the test consists of 122 multiple-choice items, divided into five subtests:

1. **DS**
a data sufficiency subtest measuring mathematical, reasoning ability by 22 items.

2. **DTM**
a subtest measuring the ability to interpret diagrams, tables and maps by 20 items.

3. **ERC**
an English reading comprehension subtest, consisting of 20 items.

4. **READ**
a Swedish reading comprehension subtest, consisting of 20 items.

5. **WORD**
a vocabulary subtest consisting of 40 items.

Ever since the SweSAT was first taken into use in 1977, the development and assembly of the test as well as the equating of forms from one administration to the next has been based on the classical test theory.

During the last decades a new measurement system, item response theory (IRT), has been developed and it has become an important complement to classical test theory in the design, construction and evaluation of tests. The potential of IRT for solving different kinds of test problems is substantial. It is essential, however, in order to achieve the possible advantages from an IRT model, that there is fit between the model and the test data of interest.

In earlier studies attempts were made to fit IRT models to the DS and DTM subtests (Stage, 1996 and 1997). The conclusion from those studies was that the three parameter logistic IRT model fitted the data reasonably well. The specific purpose of this study is to investigate the fit of the same model to the ERC subtest.
METHOD

Sample

In the DS and DTM studies a random sample of three percent of the 82,506 examinees who took part in the SweSAT in spring 1996 was used. The same random sample has been used in this study. This sample consisted of 2,461 testtakers; 1,349 females and 1,112 males. The results of these examinees on the ERC subtest are the data which will be analysed in different ways.

Classical item analysis

The classical item analysis of the ERC subtest gave a range of p-values from .41 to .91 and a range of biserial correlations from .14 to .65. The mean of the test was $M = 13.10$ and the standard deviation was $s = 3.8$. The reliability, coefficient alpha, was $r = .76$.

The range of biserial correlations indicates that there is a substantial variation in the discrimination power of the items in the test. Sometimes, though, the range may be deceptive because of a couple of "outliers". Moreover high biserial correlations are sometimes associated with very easy items. These discrimination indices do not really reveal effective items. In Figure 1 the p-values are plotted against the biserial correlations for the 20 items.

![Figure 1](image)

Figure 1. Biserial correlations plotted against p-values of the 20 items in the ERC subtest.

The plot in Figure 1 gives support to the assumption that there is variation in the discriminating power of the items. There does not seem to be any connection between easy items and high biserial correlations. The conclusion is that there seems to be a need for an item discrimination parameter, and therefore a one parameter IRT model seems unsuitable to these test results.

To examine whether guessing had taken place in the test, the testtakers with the lowest results were studied. All testtakers with a total score less than nine of the 20 possible points were selected. This gave a number of 317 examinees. The results of these 317 examinees on the
most difficult items in the test were studied. Seven items had p-values lower than .60 and the p-values of this poor group on these seven difficult items were:

\[p = 0.21 \quad 0.24 \quad 0.12 \quad 0.22 \quad 0.19 \quad 0.15 \quad 0.35 \]

This result indicated that guessing can hardly be excluded, and therefore a two parameter model also appears unsuitable to fit the data.

Factor analysis

An assumption common to all IRT models is that the set of test items is unidimensional. A crude measure of unidimensionality is coefficient alpha, as this coefficient is a measure of the internal consistency of the items in a test. The coefficient alpha was \(r = .76 \) for this subtest. A more appropriate method, however, for assessing the unidimensionality of a test is factor analysis (Hambleton & Rovinelli, 1986).

For this sample of 2,461 examinees an unrotated factor analysis resulted in four factors with eigenvalues 3.8, 1.1, 1.0 and 1.0 respectively. The variance explained by the first factor was 19.4 percent, the variance explained by the second factor was 5.7 percent, by the third factor 5.2 percent and the variance explained by the fourth factor was 5.0 percent. A plot of the eigenvalues is shown in Figure 2.

![Plot of eigenvalues for the ERC subtest.](image)

Figure 2. Plot of eigenvalues for the ERC subtest.

In Figure 2 it is shown that there is a dominant first factor in the subtest and according to Hambleton and Rovinelli (1986):

The number of “significant” factors is determined by looking for the "elbow" in the plot. The number of eigenvalues to the left of the elbow is normally taken to be the number of significant factors underlying test performance. (p 289)
All but two (items 3 and 20) of the 20 items had loadings greater than .30 on the first factor. Even though it would have been better if the amount of variance explained by the first factor had been greater it is not implausible or unreasonable to assume a single factor with the test data.

The three parameter logistic IRT model

An attempt was made to fit the results of the ERC subtest to the three parameter logistic IRT model by means of the program BILOG (Mislevey & Bock, 1990). When the number of items is 20 or greater, approximate chi-square statistics for the goodness of fit of each item are included as output of the program. For this purpose, the cases in the calibration sample are sorted into successive intervals of the latent continuum according to the estimates of their ability rescaled to mean = 0 and standard deviation = 1. This gives a reasonable test of fit if the number of items is large enough to make an assignment of cases accurate, and if the sample size is large enough to retain three or more intervals.

In this study the number of items was exactly 20 which is the lower limit and which might in fact be on the low side. The sample of examinees, on the other hand, was large. The number of intervals used was ten for most of the items, nine for four items and eight for two items and seven for two items.

The outcome of the goodness of fit analysis was that for 14 of the items in the subtest there was a model data misfit which was significant at .05 level and for seven of these 14 items the misfit was significant at .01 level. The chi-square statistics of each item are presented in Table 2 (p 9).

The reliability index reported was r = .80, which is somewhat higher than the coefficient alpha on the same test.

Goodness of fit analysis with eight ability levels

Another goodness of fit analysis was made by means of the program RESID (Rogers, 1994). In carrying out this analysis, examinees were first sorted into ability categories. The number of ability levels was specified to eight and the observed proportions of examinees in each ability category, answering the item correctly, were calculated. Expected proportions correct for each ability interval were obtained by computing the probability of success on the item on each ability level. Residual values (observed - expected) and standardized residuals were then computed. The program also contains chi-square fit statistics as output.

The outcome of the RESID analysis was that for 13 items the differences between observed and predicted results were insignificant. For seven items the differences were significant at .05 level and for two of these seven items the differences were significant at .01 level. The chi-square statistics of each item are presented in Table 2 (p 9).
Residuals provide a comparison between predicted and actual performance. Raw residuals are the differences between expected and observed performance on an item at a specified performance level. Standardized residuals (SRs) take into account the sampling error associated with each performance level as well as the number of examinees at that particular level of performance. When the model fits the data the SRs might be expected to be small and randomly distributed about 0. Within the framework of regression theory it is common to assume that the distribution of SRs is approximately normal. In Table 1 a summary of the SRs from this goodness of fit analysis is given.

Table 1. Summary of absolute-valued standardized residuals.

<table>
<thead>
<tr>
<th>residuals</th>
<th>number</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>100</td>
<td>62.50</td>
</tr>
<tr>
<td>1-2</td>
<td>50</td>
<td>31.25</td>
</tr>
<tr>
<td>2-3</td>
<td>8</td>
<td>5.00</td>
</tr>
<tr>
<td>>3</td>
<td>2</td>
<td>1.25</td>
</tr>
</tbody>
</table>

The results in Table 1 show that the distribution of SRs is a bit too flat to represent a perfect fit of the model to the data. It is acceptable, however.

Comparison between estimated IRT parameters and item indices from classical test theory

In IRT the parameter, b, is an item difficulty parameter, which in the one parameter model is the point on the scale where the probability of a correct response to an item is 0.5. In a three parameter model, where a pseudo guessing parameter (c) is included, the b parameter is the value where the probability for a correct response is 0.5 + c. The correlation between the b-values estimated by the three parameter logistic IRT model and the p-values achieved by classical test theory was $r = -0.88$. In Figure 3 the estimated b-values are plotted against the p-values.

Figure 3. Estimated b-values plotted against p-values.
The items which deviate the most are item 3 and item 20; these were the two items in the test with loadings lower than .20 in the factor analysis (see p 4). All other items have SRs less than 1.0. On the whole the estimated difficulty parameters seem to correspond fairly well to the observed difficulty indices of the items.

In IRT the discrimination parameter is called the a-parameter. The a-parameter is proportional to the slope of the item characteristic curve at the point b on the ability scale. The usual range for item discrimination parameters is (0 - 2). A plot of the estimated a-values and the corresponding biserial correlations is found in Figure 4.

![Figure 4](image-url)

Figure 4. Estimated a-values plotted against corresponding biserial correlations.

The item deviating most is item 20 with SR = 2.99. The correlation between the estimated a-values and corresponding biserial correlations was r = .73. There seems to be a reasonable correspondence between the estimated discrimination parameters and the observed discrimination indices as well.

The correlation between the observed test scores and the abilities estimated by the IRT model was r = .96.

Parameters estimated separately for males and females

One feature of IRT which is regarded as very valuable is the invariance of item parameters. In the classical test theory item difficulty and discrimination indices are dependent on the group in which they have been obtained. In IRT, on the other hand, the item parameters are invariant across ability subpopulations. This invariance only holds, however, when there is good fit of the model to the data. It is important to determine whether invariance holds, since all application of IRT capitalizes on this property. If two samples of different ability are drawn from the same population and item parameters are estimated in each sample, the congruence between the two sets of estimates of each item parameter can be taken as an indication of the degree to which invariance holds. The degree of congruence can be assessed by the correlation between the two sets of estimates of the item parameters or by studying the corresponding scatter plot. (Hambleton, Swaminathan & Rogers, 1991).
The sample used in this study was divided into males and females, giving two samples of respectively 1,112 and 1,349. These samples were run through BILOG, which gave separate parameter estimates for the two groups. In Figure 5 the difficulty parameters b estimated on the female group are plotted against the same item parameters estimated on the male group.

![Figure 5](image)

Figure 5. The b-values estimated on the female group plotted against b-values estimated on the male group.

If the estimates are invariant, the plots for the subgroups should be linear with the amount of scatter reflecting errors due to measurement errors and sampling. The correlation between b-values estimated on male and female examinees is $r = .93$. What can be seen in Figure 5 is that there are small differences in the performance of males and females on nearly all of the items on the ERC subtest. This indicates that the items are less difficult for male examinees than for female examinees because of real differences in ability. The mean for males on the subtest was $M = 13.59$ and for females $M = 12.70$. Since the difficulty estimates based on the two samples lie on a straight line, with some scatter, it can be concluded that the invariance property of the item parameters holds. Some degree of scatter can be expected because of the use of samples; a large amount of scatter would indicate lack of invariance which might be caused either by model data misfit or poor item parameter estimation (Hambleton, Swaminathan & Rogers, 1991).

In Figure 6 the a-values estimated on female examinees are plotted against the a-values estimated on male examinees.
Figure 6. The a-values estimated on female examinees plotted against the a-values estimated on male examinees.

The discrimination parameters also seem to be very congruent even though they are estimated on different samples. The correlation between a-values estimated on the two groups was $r = .83$. This invariance of parameter estimations can be taken as strong support for model data fit.

The goodness of fit analysis for the female results gave as result that for nine items there was a significant model data misfit at .05 level and for two of these items there was a misfit at .01 level. For males there was a significant misfit for seven items at .05 level and for one of these items the misfit was significant on .01 level. The chi-square statistics for each item for both males and females are presented in table 2 (p 9).

Statistical goodness of fit analyses

In Table 2 the outcome of the statistical goodness of fit analyses is presented. In the second column the chi-square values for each item from the BILOG test are given. In column three the chi-square values for each item from the RESID analysis are given; in column four the outcome from the BILOG test of the parameters estimated on the female group is presented and in column five the chi-square values from the BILOG test of parameters estimated on the male group are given.
Table 2. The Chi-square statistics from different analyses and for different samples.

<table>
<thead>
<tr>
<th>Item</th>
<th>IRT<sub>total group</sub></th>
<th>RESID<sub>total group</sub></th>
<th>IRT<sub>females</sub></th>
<th>IRT<sub>males</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.80</td>
<td>24.1**</td>
<td>12.60</td>
<td>5.30</td>
</tr>
<tr>
<td>2</td>
<td>15.50</td>
<td>2.7</td>
<td>17.50*</td>
<td>2.60</td>
</tr>
<tr>
<td>3</td>
<td>20.50*</td>
<td>161.4**</td>
<td>9.10</td>
<td>20.20*</td>
</tr>
<tr>
<td>4</td>
<td>27.10**</td>
<td>12.0*</td>
<td>20.70*</td>
<td>18.80*</td>
</tr>
<tr>
<td>5</td>
<td>9.00</td>
<td>6.2</td>
<td>11.00</td>
<td>14.40</td>
</tr>
<tr>
<td>6</td>
<td>17.90*</td>
<td>5.6</td>
<td>2.90</td>
<td>6.70</td>
</tr>
<tr>
<td>7</td>
<td>30.50**</td>
<td>11.7*</td>
<td>20.70*</td>
<td>19.50*</td>
</tr>
<tr>
<td>8</td>
<td>17.20*</td>
<td>6.0</td>
<td>6.50</td>
<td>13.40</td>
</tr>
<tr>
<td>9</td>
<td>23.70**</td>
<td>13.2*</td>
<td>30.30**</td>
<td>16.00*</td>
</tr>
<tr>
<td>10</td>
<td>13.90</td>
<td>5.1</td>
<td>14.60</td>
<td>4.80</td>
</tr>
<tr>
<td>11</td>
<td>20.40**</td>
<td>9.9</td>
<td>15.00</td>
<td>15.60*</td>
</tr>
<tr>
<td>12</td>
<td>19.50*</td>
<td>4.3</td>
<td>17.90*</td>
<td>3.90</td>
</tr>
<tr>
<td>13</td>
<td>16.80*</td>
<td>10.5</td>
<td>13.00</td>
<td>9.00</td>
</tr>
<tr>
<td>14</td>
<td>16.60*</td>
<td>11.2*</td>
<td>17.40*</td>
<td>8.00</td>
</tr>
<tr>
<td>15</td>
<td>11.30</td>
<td>8.9</td>
<td>13.00</td>
<td>8.80</td>
</tr>
<tr>
<td>16</td>
<td>27.20**</td>
<td>12.7*</td>
<td>21.70**</td>
<td>7.60</td>
</tr>
<tr>
<td>17</td>
<td>20.10**</td>
<td>15.00*</td>
<td>14.50*</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>17.10*</td>
<td>2.8</td>
<td>9.30</td>
<td>11.20</td>
</tr>
<tr>
<td>19</td>
<td>13.40</td>
<td>3.2</td>
<td>9.00</td>
<td>8.30</td>
</tr>
<tr>
<td>20</td>
<td>23.70**</td>
<td>8.2</td>
<td>17.50*</td>
<td>23.90**</td>
</tr>
</tbody>
</table>

The difference between the results from the BILOG and the RESID analyses may be caused by the fact that the number of ability levels differs. 20 items may be too few to get stable
ability estimates, and this could explain why there was a misfit for several items. There is also a noticeable difference between the number of items with significant misfit when the parameters are estimated on the whole group in comparison with separate male and female groups and the reason for this is probably the difference in sample sizes.

Statistical tests have a well-known and serious flaw: their sensitivity to sample size. This is what Hays (1969) calls the fallacy of evaluating a result in terms of statistical significance alone:

> Virtually any study can be made to show significant results if one uses enough subjects, regardless of how nonsensical the content may be.

p 326

Almost any departure from the model under consideration will lead to rejection of the null hypothesis of model data fit if the sample size is sufficiently large. If, on the other hand, sample sizes are small, even large model data discrepancies may not be detected due to the low statistical power associated with the significance tests (Hambleton, Swaminathan & Rogers, 1991).

Hambleton et al. (1991) give the following recommendations regarding assessment of model data fit:

> In assessing model-data fit, the best approach involves a) designing and conducting a variety of analyses designed to detect expected types of misfit, b) considering the full set of results carefully, and c) making a judgment about the suitability of the model for the intended application. Analyses should include investigations of model assumptions, of the extent to which desired model features are obtained, and of differences between model predictions and actual data. Statistical tests may be carried out, but care must be taken in interpreting the statistical information. The number of investigations that may be conducted is almost limitless. (p 74)

Graphical model data fit

The item response curves estimated by BILOG for the 20 items in the ERC subtest are presented in Figure 7 to Figure 26. In the same Figures the item information functions for each item is included. Item information functions display the contribution items make to ability estimation at points along the ability continuum. The size of this contribution depends, to a great extent on an item’s discrimination power. Where on the ability scale that the information contribution of the item is realized depends on the item’s difficulty. To the right in Figures 7 to 26 there is a representation of the model data fit for each item.
Figure 7. Response curve, information and model fit for item one in the ERC subtest.

Item one had a significant misfit according to the Resid test but not according to Bilog. There was no misfit for males nor for females. The information is rather poor, however, and it is mainly given at very low ability levels; the psuedo guessing parameter is also very high.

Figure 8. Response curve, information and model fit for item two in the ERC subtest.

For item two there is no significant misfit. The main information is given somewhat above medium ability level, but the information is not very high.
Figure 9. Response curve, information and model fit for item three in the ERC subtest.

Item three seems to be a very poor item. There is significant misfit according to both RESID and Bilog and also there is hardly any information at all given by this item. Item three was also the item which had the lowest loading on the first factor (see p 4).

Figure 10. Response curve, information and model fit for item four in the ERC subtest.

For item four there is significant misfit according to Bilog by not according to RESID. This item gives a lot of information at a fairly high ability level. The misfit, however, seems to be mainly at high ability levels as well.
Figure 11. Response curve, information and model fit for item five in the ERC subtest.

For item five there is no misfit, the information is reasonably good and located at an ability level somewhat above medium.

Figure 12. Response curve, information and model fit for item six in the ERC subtest.

Item six has significant misfit at .05 level for the total group according to the Bilog test but none of the other tests. The item has rather poor information and high guessing, however.
Figure 13. Response curve, information and model fit for item seven in the ERC subtest.

Item seven has significant misfit according to all analyses. The item has very good information above medium ability and the guessing is rather low.

Figure 14. Response curve, information and model fit for item eight in the ERC subtest.

For item eight there is significant misfit only according to the Bilog test for the total group. The misfit seems to be located at a very high ability level though. This item also has high information somewhat above medium ability level.
Figure 15. Response curve, information and model fit for item nine in the ERC subtest.

Item nine has significant misfit according to all analyses. The information is very high but located at very low ability levels.

Figure 16. Response curve, information and model fit for item 10 in the ERC subtest.

Item ten has acceptable model data fit according to all analyses. The information is also rather good but located at ability levels below medium.
Figure 17. Response curve, information and model fit for item 11 in the subtest ERC.

Item 11 has acceptable model data fit according to the Resid test but not the Bilog test. The discrimination and hence the information is good but located at ability levels below medium.

Figure 18. Response curve, information and model fit for item 12 in the subtest ERC.

Item 12 also has acceptable model data fit according to the Resid test but not the Bilog test. The information is rather good and located at medium ability level.
Figure 19. Response curve, information and model fit for item 13 in the ERC subtest.

Item 13 as well has acceptable model data fit according to the Resid test but not the Bilog test. The information given by this item is good and located at medium ability level.

Figure 20. Response curve, information and model fit for item 14 in the ERC subtest.

Item 14 also has very good information but somewhat below medium ability level. There is however significant misfit at .05 level.
For item 15 there is no significant model data misfit on the other hand this item has very poor discrimination power and does not give much information at any ability level.

For item 16 there is significant model data misfit according to the Resid as well as the Bilog test. The information provided by this item is also located at very low ability levels.
Figure 23. Response curve, information and model fit for item 17 in the ERC subtest.

Item 17 has good discrimination power and hence the information provided is also fairly good; the information is located somewhat above medium ability. There is significant misfit, however, according to the Bilog test.

Figure 24. Response curve, information and model fit for item 18 in the ERC subtest.

For item 18 there is significant model data misfit according to the Bilog test only. The main information is provided at very high ability levels.
Figure 25. Response curve, information and model fit for item 19 in the ERC subtest.

Item 19 is a very good item regarding discrimination and information. The model data fit is acceptable according to all the tests performed.

Figure 26. Response curve, information and model fit for item 20 in the ERC subtest.

Item 20 has acceptable information and the main information is provided at very high ability levels. There is, however, significant model data misfit according to the Bilog tests.
In Figure 27, finally, the total test information function is presented. The information given by a test at different ability levels is the sum of the item information curves at the same ability levels.

![Figure 27. Test information curve and measurement error in the ERC subtest.](image)

As may be seen from Figure 27 the standard error is inversely related to the information at each ability level, i.e. the standard error is different at different ability levels. From the test information function it may also be seen that the errors are much smaller around average ability than for both low and high ability levels. This finding is to be expected with the current approach to test design, even though the standard error of measurement in classical test theory (which for this test was $s_e = 1.86$) is assumed to be the same for all score levels.

Concluding remarks

In many IRT applications reported in the literature, model-data fit and the consequences of misfit have not been investigated adequately. As a result, less is known about the appropriateness of particular IRT models for various applications than might be assumed from the voluminous IRT literature. A further problem with many IRT goodness of fit studies is that too much reliance has been placed on statistical tests of model fit (Hambleton et al., 1991).

The results from this attempt to fit a three parameter logistic IRT model to the response data from the ERC subtest are not completely clear-cut. Without doubt the results from the classical test theory gave support for the need of a three parameter model. The statistical tests were somewhat discouraging as too many items turned out to have significant model data misfit. On the other hand the separate estimates for males and females were encouraging, since the estimates for the two groups corresponded fairly well. The main problem may be that the number of items in the ERC subtest is too low to make reasonable ability estimates. It seems worthwhile, however, to investigate the remaining subtests in the SweSAT in the same
way. It also seems reasonable to investigate different combinations of subtests before the final decision on whether the SweSAT program may be improved by using IRT can be made.
REFERENCES

