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13:00-15:00 Contributed talks, Session 1 

Oscar Carlsson  

Differential Geometry in Equivariant CNNs via Biprincipal Bundles 

The standard convolutional layer in convolutional neural networks (CNNs) arises from a 
general linear map constrained by translation equivariance. This constraint leads to the 
classical weight-sharing property of the integration kernel. Interestingly, one can also derive 
this property from a purely differential geometry viewpoint. In this talk, I will present this 
alternative derivation for the weight-sharing constraint of the standard CNN and then extend 
this framework to a more general setting using biprincipal bundles. Finally, I will discuss how 
this differential geometry framework connects to established approaches for equivariant 
CNNs on homogeneous spaces. 

Elias Nyholm  

Unifying transformers and CNNs as equivariant maps 

I will present our recent work on a general framework of non-linear equivariant neural 
networks on homogeneous spaces. The framework generalises both attention-based 
(transformer) architectures and convolution-based (CNN) architectures. This unifying 
approach highlights similarities  and differences between the two families of architectures, 
for example by establishing a correspondence between the convolutional kernel in CNN 
models and relative positional embeddings on the transformer side. It also opens the door for 
the design of novel non-linear equivariant machine learning models. The presentation is 
based on joint work with Oscar Carlsson, Maurice Weiler and Daniel Persson 
(arxiv:2504.20974). 

Emma Andersdotter Svensson  

A Bundle Formalism for Equivariant Neural ODEs 

Previous work by, e.g., M. Weiler et al has shown that using a bundle formalism to describe 
equivariant CNNs is a useful way to capture the underlying mathematical structures. There, 
feature maps are described as sections of an associated bundle of a homogeneous vector 
bundle. In my talk, I will introduce a way to use the bundle formalism for equivariant 
manifold neural ODEs – a neural network model where the network is defined by a vector 
field describing how the data evolves continuously with time. By considering neural ODEs on 
a homogeneous space, we can define a lift of the solution curve to an associated bundle, 
making it possible to extend previous formulations in terms of a parallel transport. I will 
include a description of how this formulation might be a generalization of our previous 
formulation of vector fields being transformed by neural ODEs through the pushforward. 



15:30-17:00 Contributed talks, Session 2 

Max Guillen  

Finite-width Neural Tangent Kernels from Feynman Diagrams 

Neural tangent kernels (NTKs) are a powerful tool for analyzing deep, non-linear neural 
networks. In the infinite-width limit, NTKs can easily be computed for most common 
architectures, yielding full analytic control over the training dynamics. However, at infinite 
width, important properties of training such as NTK evolution or feature learning are absent. 
Nevertheless, finite width effects can be included by computing corrections to the Gaussian 
statistics at infinite width. We introduce Feynman diagrams for computing finite-width 
corrections to NTK statistics. These dramatically simplify the necessary algebraic 
manipulations and enable the computation of layer-wise recursive relations for arbitrary 
statistics involving preactivations, NTKs and certain higher-derivative tensors (dNTK 
and ddNTK) required to predict the training dynamics at leading order. We demonstrate the 
feasibility of our framework by extending stability results for deep networks from 
preactivations to NTKs and proving the absence of finite-width corrections for scale-invariant 
nonlinearities such as ReLU on the diagonal of the Gram matrix of the NTK. We validate our 
results with numerical experiments. 
 
Phillip Misof  

Equivariant Neural Tangent Kernels - Connecting data augmentation and equivariant 
architectures 

In recent years, the neural tangent kernel (NTK) has proven to be a valuable tool to study 
training dynamics of neural networks (NN) analytically. In this talk, I will present how this 
NTK framework can be extended to equivariant NNs based on group convolutional NNs 
(GCNNs). Not only does this enable the analytic study of influences of hyperparameters, 
training biases etc. in equivariant NNs, but it also allows us to draw an interesting connection 
between data augmentation and manifestly equivariant architectures. In particular, we show 
that the mean predictions of an ensemble of data augmented non-equivariant networks 
coincide with the mean predictions of an ensemble of specific GCNNs at all training times in 
the infinite-width limit. We further provide explicit implementations of the equivariant NTK 
for roto-translations in the plane and 3d rotations. To evaluate the performance of the 
equivariant infinite width solution, we benchmark the models on quantum mechanical 
property prediction and medical image classification. 
 
Oskar Nordenfors   

Data augmentation yields equivariance for ensembles of neural networks 

There is an ongoing debate in Deep Learning, whether one should restrict neural network 
architectures to equivariant ones when the task calls for an equivariant model, or whether 
one should simply train a more expressive model and hope to learn the equivariance through, 
for example, data augmentation. It turns out that iterations of SGD under data augmentation 
are equivariant, which has the effect that invariantly initialized weights keep their invariant 
distribution during training. Isotropic Gaussians are invariant to orthogonal transformations. 
Thus, Gaussian initialization is enough to guarantee that the distribution of our network's 
weights will be invariant to representations of any compact group throughout training with 
data augmentation. In particular, the mean network will be equivariant whenever we stop 
training, given that the network's architecture is in some sense compatible with the geometry 
given by the group. This result generalizes earlier work which guarantees equivariance for 
ensembles of MLPs. 
 



Wednesday August 20th 

9.00-10.00 Invited talk 

Elisenda Grigsby 

Local complexity measures in modern parameterized function classes 
for supervised learning 
 
The parameter space for any fixed architecture of neural networks serves as a proxy 
during training for the associated class of functions - but how faithful is this 
representation? For any fixed feedforward ReLU network architecture, it is well-
known that many different parameter settings can determine the same function. It is 
less well-known that the degree of this redundancy is inhomogeneous across 
parameter space. I'll discuss two locally-applicable complexity measures for ReLU 
network classes and what we know about the relationship between them: (1) the local 
functional dimension, and (2) a local version of VC dimension called persistent 
pseudodimension. The former is easy to compute on finite batches of points, the 
latter should give local bounds on the generalization gap. I'll speculate about how this 
circle of ideas might help guide our understanding of the double descent 
phenomenon. All of the work described in this talk is joint with Kathryn Lindsey. 
Some portions are also joint with Rob Meyerhoff, David Rolnick, and Chenxi Wu. 
 
10.30-12:00 Contributed talks, Session 3 
 
Vahid Shahverdi 
 
Neuroalgebraic Cartography: Geometry Under the Surface 
 
In this talk, I will introduce neuroalgebraic geometry, the study of neural networks through 
the lens of algebraic geometry. The main object of interest is the neuromanifold, which is the 
space of all functions realizable by a given architecture. I will explain how two fundamental 
invariants of the neuromanifold, its dimension and algebraic degree, are closely linked to the 
network’s expressivity and sample complexity. I will then discuss how singularities, often 
associated with subnetworks, arise naturally in these sets. These lower-dimensional regions 
tend to attract training dynamics, contributing to the network’s implicit bias. Finally, I will 
show how studying the fibers of the parameterization map gives insight into identifiability 
and the symmetries encoded by the architecture. 
 
Stefano Mereta 
 
The geometry of the neuromanifold of ReLU networks 
 
Neural networks define a space of functions, often called "neuromanifold", as their 
parameters vary. Studying these spaces can lead to a better understanding of the statistical 
and computational aspects of the network itself. Algebraic geometry (among other tools) has 
proven to be a valuable tool to study neuromanifolds, as recent works on polynomial neural 
networks prove. In this talk we will approach the same study for ReLU neural networks. I will 
focus on explaining how, in order to identify the neuromanifold of such networks, it is to 
necessary to characterise all the ways in which a continuous piecewise linear function can be 
written as the difference of two convex piecewise linear functions, and some preliminary 
results in this direction. This is joint work with A. Flinth and M. Pernice. 



Alex Massarenti 
 
On the dimension of neuro varieties 
 
We study polynomial neural networks with a single-node output layer.  
We relate the thickness of the associated neuro varieties to the secant defectiveness of 
Veronese varieties,  
propose a conjecture for the thickness, and outline a strategy toward its proof. 
 
13:30-15:00 Contributed Talks, Session 4 
 
Felix Stollenwerk 
 
Research at AI Sweden 
 
This talk will first give a broad overview of AI Sweden’s activities and projects, with an 
emphasis on the work of the Natural Language Understanding Group. Subsequently, I will 
present our latest research on the geometry of LLM word embeddings and the theoretical 
foundation of dynamic activation functions. 
 
Hampus Linander 
 
PEAR: Equal Area Weather Forecasting on the Sphere 
 
Machine learning methods for global medium-range weather forecasting have recently 
received immense attention. Following the publication of the Pangu Weather model, the first 
deep learning model to outperform traditional numerical simulations of the atmosphere, 
numerous models have been published in this domain, building on Pangu's success. 
However, all of these models operate on input data and produce predictions on the Driscoll--
Healy discretization of the sphere which suffers from a much finer grid at the poles than 
around the equator. In contrast, in the Hierarchical Equal Area iso-Latitude Pixelization 
(HEALPix) of the sphere, each pixel covers the same surface area, removing unphysical 
biases. Motivated by a growing support for this grid in meteorology and climate sciences, we 
propose to perform weather forecasting with deep learning models which natively operate on 
the HEALPix grid. To this end, we introduce Pangu Equal ARea (PEAR), a transformer-based 
weather forecasting model which operates directly on HEALPix-features and outperforms the 
corresponding model on Driscoll--Healy without any computational overhead. 
 
Tino Paulsen 
 
Hyperbolic Music Representations 
 
As music is inherently hierarchical, Euclidean geometry fails to capture this explicitly. 
Utilizing hyperbolic geometry not only encodes different features clearly, especially keys and 
musical richness. This enables novel interpolation approaches, which allow for different 
control over music generation.  
 
 
 
 
 
 
 
 



Thursday August 21st 
 
09.00-10.00 Invited talk 
 
Luca Cosmo 
 
Graph Generative Models for Interpretable Graph Neural Networks 
 
Graph neural networks are effective tools for learning from structured data, but in 
many cases, the structure most relevant to the task is unknown, either because it is 
not observed during data collection or because it must be discovered during learning. 
In this talk, I will present how graph generative models can be used to learn these 
task-relevant (sub)structures and to design graph convolutional operators that 
improve both performance and interpretability. We will explore the principles behind 
this approach, along with examples showing how uncovering the right structure can 
make GNNs more transparent and insightful. 
 
 
 
 
 
 
 
 
 
 
 
10.30-12.00 Contributed talks, Session 5 
 
Longde Huang 
 
Learning Chern Numbers of Topological Insulators With Gauge Equivariant Neural 
Networks 
 
Equivariant network architectures are a well-established tool for predicting invariant or 
equivariant quantities. However, almost all learning problems considered in this context 
feature a global symmetry, i.e. each point of the underlying space is transformed with the 
same group element, as opposed to a local “gauge” symmetry, where each point is 
transformed with a different group element, exponentially enlarging the size of the symmetry 
group. Gauge equivariant networks have so far mainly been applied to problems in quantum 
chromodynamics. Here, we introduce a novel application domain for gauge-equivariant 
networks in the theory of topological condensed matter physics. We use gauge equivariant 
networks to predict topological invariants (Chern numbers) of multiband topological 
insulators. The gauge symmetry of the network guarantees that the predicted quantity is a 
topological invariant. We introduce a novel gauge equivariant normalization layer to stabilize 
the training and prove a universal approximation theorem for our setup. We train on samples 
with trivial Chern number only but show that our models generalize to samples with non-
trivial Chern number. We provide various ablations of our setup. Our code is available at 
https://github.com/sitronsea/GENet/tree/main. 
 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fsitronsea%2FGENet%2Ftree%2Fmain.&data=05%7C02%7Caxel.flinth%40umu.se%7C388da294e7304e9e0d4108ddd41aebfe%7C5a4ba6f9f5314f329467398f19e69de4%7C0%7C0%7C638899934307723782%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=QxzV1y7OzrmfAL%2BoSPM2PcVOvNqSzZwbRY%2BLbwoHo08%3D&reserved=0


Alexander Friedrich 
 
Autoencoding via Neural ODEs on M-polyfolds 
 
Neural ordinary differential equations (NODEs) describe the dynamics of information 
propagating through the model using a system of ordinary differential equations (ODEs) 
defined on a manifold. In the Euclidean case the NODE corresponds to a (recurrent) neural 
networks in the limit of infinite depth, but non-Euclidean geometry can be also be 
accommodated. This results in manifold NODEs that describe flows generated by vector 
fields. These models offer several attractive properties, and have been used successfully to 
model probability densities in different geometries by constructing continuous normalizing 
flows (CNFs).  
 
However, current NODE models are fundamentally constrained by the fact that the 
dimension of the state vector in the dynamical system is fixed due to the intrinsic nature of 
the dimension of the manifold. On the other hand the encoder-decoder architecture famously 
extracts a lowerdimensional latent representation from which the original data can be 
efficiently reconstructed. There is currently no way to incorporate such variable dimension 
dynamics into the existing NODE framework.  
 
In this talk, we show how to extend NODEs from manifolds to Manifold like polyfolds, M-
polyfolds for short, in order to incorporate variable dimension dynamics in geometric deep 
learning. We present a brief overview of M-polyfolds, together with generalized notions of 
continuity and differentiability, which endow stratified topological spaces with a smooth 
structure. Further, we construct explicit M-polyfolds featuring the dimensional bottleneck 
characteristic of autoencoders and define NODEs capable of encoding and decoding 
geometric objects like curves and surfaces in theses spaces. In particular, the encoding is 
accomplished through the construction of compressing vector fields, which give rise to flows 
that traverse the bottleneck. Finally, we show how to use the adjoint method for training the 
resulting models for reconstruction and classifications tasks. 
 
 
 
 


