Problems to start with

- 1. Equation $x^3 6x^2 + 3x + 4 = 0$ has three distinct roots, which we denote by a, b and c. Calculate the value of $a^2 + b^2 + c^2$. (Hint: **do not** attempt to find an explicit expressions for a, b and c you are very likely not going to succeed).
- 2. Equation $x^4 + x^3 10x^2 + 1$ has four distinct roots, which we denote by a, b, c and d. Calculate the value of

$$a^{2}b + ab^{2} + a^{2}c + ac^{2} + a^{2}d + ad^{2} + b^{2}c + bc^{2} + b^{2}d + bd^{2} + c^{2}d + cd^{2}$$
.

(Comment: Suppose the roots are instead denoted by x_1, x_2, x_3 and x_4 . Then the above expression is the so-called 'symmetric sum' of $x_i^2 x_j$ - that is, it contains all the $12 = 4 \cdot 3$ terms of the form $x_i^2 x_j$ for any choices of $i, j \in \{1, 2, 3, 4\}$ with $i \neq j$.)

- 3. Suppose that the constants a, b and c are chosen so that the polynomial $p(x) = x^3 + ax^2 + bx + c$ satisfies p(0) = 0, p(1) = 1 and p(2) = 2. Find the value of p(3).
- 4. Now suppose that the constants a_0, a_1, \ldots, a_7 are chosen so that the polynomial $p(x) = x^8 + a_7x^7 + a_7x^7 + \cdots + a_1x + a_0$ satisfies p(i) = i for every $i \in \{0, 1, \ldots, 7\}$. Find the value of p(8).

(**Note:** if your solution to the previous problem involved heavy calculations, then you are not going to be able solve this problem by using similar methods).

More difficult problems

- 5. Let b and c be constants, and let $P(x) = x^3 3bcx + b^3 + c^3$. Prove that P(-b-c) = 0.
 - Deduce that $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)$ for all $a,b,c\in\mathbb{R}$
 - Prove that $a^3 + b^3 + c^3 \ge 3abc$ whenever a, b, c are positive real numbers.
- 6. Suppose that a, b and c are real numbers which satisfy the conditions $a^2 + b^2 = 2c^2$, $a \neq b$, $c \neq -a$ and $c \neq -b$. Prove that

$$\frac{(a+b+2c)(2a^2-b^2-c^2)}{(a-b)(a+c)(b+c)} = 3.$$

- 7. Solve system of equations $x^2 + y^2 = 6z$ and $y^2 + z^2 = 6x$ and $z^2 + x^2 = 6y$.
- 8. Find all polynomials p which satisfy the condition (x-10)p(x)=xp(x-1) for every $x \in \mathbb{R}$.