Problem sheet 1

- **Problem 1.** Using three distinct digits, we create the smallest and largest 3-digit number possible, and add them together. If the result is 1655, what are the three digits?
- **Problem 2.** What is the maximal positive integer n such that n + 10 divides $n^2 + 2023$?
- **Problem 3.** In each field of a 3×3 table, we write one of the numbers 0, 1, 2. We add the numbers in each row and each column. Is it possible that the resulting 6 numbers are all different?
- **Problem 4.** Let P be an interior point of the rectangle ABCD. Assuming AP = 4, BP = 6, and DP = 9, determine the length of CP.

Homework problems

You may submit your written solutions until the next meeting (17 October) in person, or by email (istvan.tomon@umu.se).

Problem 1. Find all real solutions x, y of the equation

$${x + y} = {x} \cdot {y},$$

where $\{a\}$ is the fractional part (also known as the decimal part) of a. It is defined as $\{a\} = a - \lfloor a \rfloor$, where $\lfloor a \rfloor$ is the largest integer not larger than a.

(7 points)

Problem 2. Determine the smallest positive integer whose every digit is 2 or 3, and is divisible by 132.

(7 points)

Problem 3. Given a parallelogram ABCD, draw the line perpendicular to the side AB from B. This line intersects the AC diagonal in the interior point E. Assuming $AE = 2 \cdot BC$, in what ratio does AC divide the angle $\angle BAD$?

(7 points)