
1 

Problemlösning och tävlingsmatematik 

23 October 2024 

Solutions to easier problems 

Problem 1.1. Uppigift 2.30 

Proof. Let x1, . . . , x10 denote the number of mushrooms picked by the students 
chosen so that x1 ≤ · · · ≤ x10. Suppose for the sake of contradiction that all 
of these are distinct. Then we must have xi ≥ i for every i, whence the total 
number of mushrooms picked is at least 

1 + 2 + · · · + 10 = 55, 

which is a contradiction. 

Problem 1.2. If 9 people are seated in a row of 12 chairs, then some consecutive 
set of 3 chairs are flled with people. 

Proof. Let Ai denote the group of chairs 3i − 2, 3i − 1 and 3i for i ∈ {1, 2, 3, 4}. 
These groups of chairs are disjoint, and there are 4 such groups. Since 9 = 2·4+1, 
by the (generalised) box principle one of the groups contains at least 2 + 1 = 3 
people. Thus there is a group Ai so that there is a person sitting on each of the 
chairs, as desired. 

Problem 1.3. Suppose S is a set of n + 1 integers. Prove that there exists 
distinct a, b in S such that a − b is a multiple of n. 

Proof. Let C0, . . . , Cn−1 denote sets chosen so that Ci contains those x ∈ S that 
are of the form x = a·n+i for some integer a. It is clear that each x ∈ S belongs 
to exactly one such sets. Since there are n such sets, by the box principle one 
of them contains at least 2 elements of S, say Cj . Thus there exists u, v ∈ S so 
that 

u = a · n + j 

and 
v = b · n + j. 

Thus 
u − v = (a − b) · n, 

so n divides u − v, as required. 
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Problem 1.4. There are 2n − 1 rooks on a (2n −1) × (2n − 1) chessboard placed 
so that none of them threatens another. Prove that any n × n square contains 
at least one rook. 

Proof. Suppose for the sake of contradiction that there exists a n×n sub-square 
A that does not contain any rooks. Let I denote the set of rows in A, and J 
denote the set of columns in A. Since each row in A does not contain any rooks, 
every row i ∈ I must contain its rook in a column j ̸∈ J . Thus the columns 
outside J contain at least n rooks (one for each row in I). Since there are n 
rows in I and n − 1 columns outside J , by the box principle one of the columns 
outside J contains two rooks. This contradicts the assumption that each column 
contains exactly one rook. Thus every n×n sub-square must contain a rook. 

Problem 1.5. There are 7 points placed inside the unit circle. Prove that there 
are two of them whose pairwise distance is at most 1. Give a construction 
showing that one cannot replace ”distance at most 1” with ”distance strictly less 
than 1”. 

Proof. Draw three lines through the center of the circle so that the lines intersect 
each others in angle 60◦ . These lines together creates six identical sectors. It 
is easy to check that inside each such sectors, any two points are distance at 
most 1 apart from each others (we proved this at the start of the lesson on the 
board). 

If there are 7 points, then one of the sectors contains at least 2 points by the 
box principle. Thus by the observation above, we are done. 

Let one of the seven points, say Q, be the centre of the circle, and suppose 
that the other 6 points form a regular hexagon, and each of them lies on the 
circle. This is possible by fxing one of the points P1 on the circle, and placing 
the other fve points P2, . . . , P6 on the circle so that the angle P QPi is (i−1)·60◦ . 
Then all the pairwise distances between the points are clearly at least one. 

Solution to Problem 2.2: Now suppose that there are 6 points. Again, if 
one of the sectors contains at least 2 points, then we are done. Otherwise, each 
of the sectors contain exactly 1 point. Now rotate the circle until at least one 
of the points is on one of these three lines (i.e. on the boundary of one of the 
sectors). Since such a point is in two of the sectors, it cannot any more the case 
that each sector contains exactly one point. Thus one of the sectors contains 
one point, and we are done. 

Problem 1.6. If each point of the plane is colored red or blue then there are 
two points of the same color at distance 1 from each other. 

Proof. Choose three points in the plane that form a equilateral unit triangle, i.e. 
a triangle whose all side-lengths are equal 1. By the box principle, at least two 
of these three points must be colored with the same color. Thus these two points 
are colored with the same color, and are distance 1 apart from each others. 
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Problem 1.7. Prove that in any set of 51 points inside a unit square, there are 
always three points that can be covered by a circle of radius 1/7. 

Proof. Split the unit square into 25 equal-sized squares with side-lengths 1/5 by 
using vertical and horizontal lines. For each such smaller square, draw a circle 
centered at the center of the small square, and which passes through the four 
vertices of the small square. Thus the radius of such circle equals the length of 
the diagonal of the smaller square, which by Pythagoras’ theorem equals p √ 

(1/5)2 + (1/5)2 = 2/5. 

1Thus the radius of the circle equals √ , and note that 
5 2 

1 1 1 1 √ = √ < √ = . 
5 2 50 49 7 

Since there are 25 such squares and 51 points, by the generalised box principle 
there exists a square containing at least 3 points. Since each such square is 
contained in a contained in a circle with radius strictly less than 1/7, this 
completes the proof. 

Problem 1.8. Suppose n is an odd integer (i.e. not divisible by 2), and let 
f : {1, . . . , n} → {1, . . . , n} be a bijection (i.e. {1, . . . , n} is the image of f , and 
for all a ≠ b we have f(a) ≠ f(b)). Prove that the product 

nY 
(f(i) − i) 

i=1 

is an even integer. 

Proof. Let S denote the subset of {1, . . . , n} consisting of odd integers less than 
n+1 n. Then we clearly have |S| = . Now look at the pairs (i, f(i)) with i ∈ S.2 

n+1 n−1Since there are such pairs, and there are only even integers, we cannot2 2 
have f(i) being even for every i ∈ S. Thus we conclude that there exists i ∈ S 
so that we also have f(i) ∈ S. Since both i and f(i) are odd, we conclude that 
f(i) − i is even, and thus the whole product must be even. 

The proof above is slightly more simple that a one that would properly use 
the box principle. Indeed, one could rephrase the proof as follows. 

Consider the pairs (i, f(i)). There are n pairs in total, and each integer i 
occurs in exactly two such pairs: once in the frst entry, and the other time in 

n+1the second entry. Since there are odd integers, the pairs in total contain 2 
n + 1 odd integers. Thus by the box principle there exists a pair (i, f(i)) that 
contains at least (and hence exactly) two odd integers. Thus f(i) − i is even, 
and thus the whole product must be even. 

Problem 1.9. Every point in a plane is either red, green, or blue. Prove that 
there exists a rectangle in the plane such that all of its vertices are the same 
color. 
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Proof. We only restrict our attention to those points that contain an integer 
coordinate. Furthermore, we only restrict to the rectangle (x, y) where 0 ≤ x ≤ 
3, and 0 ≤ y ≤ M where M is to be specifed later. 

The idea is as follows: Consider the set of points (0, y) for 0 ≤ y ≤ M − 1. 
At least one of the colors (red, blue or green) is ”popular” in a sense that there 
are many points colored with this color. To formalize this is in terms of the box 
principle, there exists a color c0 ∈ {red, blue green} so that there are at least 
M points colored with c0 by the box principle. Now let S0 be the set of those 3 
y for which (0, y) is colored with c0. 

We could repeat the above argument for the whole interval [0,M ] to fnd 
many points (1, y) that have the same color - but the problem is that this 
gives us very little information if this sets does not overlap substantially with 
S0. Instead, we note that by the box principle there exists S1 ⊆ S0 with 
|S1| ≥ |S0| M≥ for which the points (1, y) with y ∈ S1 are colored with the3 9 
same color c1 ∈ {red, blue green}. 

Repeating this twice more, we can fnd sets S2 ⊆ S1 and S3 ⊆ S2 for which 
M Mwe have |S2| ≥ |S1| ≥ and |S3| ≥ |S2| ≥ and colors c2, c3 so that every 3 27 3 81 

point (2, y) with y ∈ S2 is colored with c2, and every point (3, y) with y ∈ S3 is 
colored with c3. 

Since S3 ⊆ S2 ⊆ S1 ⊆ S0, we note that for every y ∈ S3 and i ∈ {0, 1, 2, 3}, 
the point (i, y) is colored with ci. Since there are only two colors, we conclude 
that two of the colors in {c0, c1, c2, c3} must be identical, say that we have 
ci = cj where i < j. If M ≥ 162, we conclude that |S3| ≥ 2, whence there exists 
distinct x, y ∈ S3. In particular, every one of the four points (x, i), (x, j), (y, i) 
and (y, j) is colored with the same color ci = cj , and they form a rectangle. 
This completes the proof. 

Note that our bound on M is quite sub-optimal: with a more careful analysis, 
it would be possible to provide a substantially smaller lower bound for it. 
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