
Solution 1. Let n = (m + 1)!+1, where m! = 1 ·2 · · · · ·m and m ≥ 2. Observe that for every 
i ∈ {2, . . . ,m + 1}, we have i| (m + 1)!. Hence for every i ∈ {1, . . . ,m}, we have i + 1|n + i. 

n+i ≥ 2(m+1)Furthermore, since m ≥ 2, it follows that n ≥ 2 (m + 1)+1, so = 2. Thus n + i
i+1 m+1 

cannot be a prime number for any i ∈ {1, . . . ,m}. This proves the statement when m ≥ 2; 
the case m = 1 is trivial as one can take any composite integer. 

Solution 2. We give three solutions of slightly di˙erent ˛avor. First observe that if we ˝x 
the value of y, the equation reduces to a quadratic equation in x. In particular, this can be 
solved for any given ˝xed value of y. Looking at small values, it seems that (3, 4) and (4, 3) 
are the only solutions. 

Since the equation is symmetric in x and y, we may assume that x ≥ y. Hence the 
right-hand side of the equation is at most 2x2 , while the growth-speed of the left-hand side 
is closer to x2y2 . Thus even when y = 2, the left-hand side grows much faster. In the ˝rst 
two solutions, we try to formalize this idea into a proper solution. 

2 2When y is very small, it is not true that (xy − 7)2 grows like x y , so we actually have to 
consider a few more special cases than just y = 1. However, solving the equation for given 
small y's is substantially easier, so we seek for a way to prove that for every solution, the 
quantity min {x, y} needs to be small. 

Solution 2.1: By symmetry, we may assume that x ≥ y. If y ≥ 4, then xy ≥ y2 ≥ 16 > 
2 · 7, so we conclude that 1

2 xy > 7. In particular, it follows that � �2 � �2
1 1 1 12 2 2(xy − 7) = xy + xy − 7 > xy ≥ x y 2 ≥ 4x . 
2 2 2 4 

Here we are using the fact that the function z → z2 is increasing when z ≥ 0 and the fact 
2 2 2that we are assuming that y ≥ 4. However, this contradicts the fact that x +y2 ≤ 2x < 4x . 

Thus we must have y ≤ 3. It is easy to check that 

1. (x − 7)2 = x2 + 1 has no solutions in positive integers (only solution is x = 24
7 ). 

2. (2x − 7)2 = x2 + 4 has no solutions in positive integers (only solutions are irrational). 

3. (3x − 7)2 = x2 + 9 has solutions x = 4 and x = 
4
5 . 

Thus (x, y) = (4, 3) is the only solution satisfying x ≥ y, so all the solutions are (4, 3) and 
(3, 4). 

Solution 2.2: Again, we assume that x ≥ y, and we suppose that y ≥ 5. Observe that the 
original equation is equivalent to having y2 = (xy − 7)2−x2 = (x (y − 1) − 7)·(x (y + 1) − 7) . 
Since x ≥ y ≥ 4, we have 

x (y + 1) − 7 ≥ 4y + x − 7 ≥ 3y + 1 > 3y. 

We also have 
1 y 
x (y − 1) ≥ y − 1 ≥ 

4 2 
and 

3 3 
x (y − 1) ≥ · 4 · 3 = 9 > 7,

4 4 

1 



thus implying that x (y − 1) − 7 > y 
2 . Combining this with the ˝rst inequality implies that 

3 2 2(x (y − 1) − 7) · (x (y + 1) − 7) > 
2 y > y whenever x ≥ y ≥ 4, thus giving the desired 

contradiction. Hence for every solution satisfying x ≥ y we must have y ≤ 3, and the rest of 
the solution can be concluded as before. 

Solution 2.3: This solution di˙ers substantially from the previous two. The idea is to 
treat y as a constant, and solve the quadratic equation in terms of x. The discriminant of 
this quadratic equation must be a perfect square. 

Observe that the original equation is equivalent to (y2 − 1) x2 − 14xy +49 − y2 = 0, which 
hsa discriminant D = 196y2 − 4 (y2 − 1) (49 − y2). Then the solutions of this equation are 

√ 
14y ± D 

x = . 
2 (y2 − 1) 

If one of these solutions is an integer, then D = (2x (y2 − 1) − 14y)2 
is a perfect square, i.e. 

a square of an integer. 
Observe that D can be written as � �2 

D = 4y 4 − 4y 2 + 196 = 2y 2 − 1 + 195. 

Our aim is to prove that for y su°ciently large, D is strictly contained between two perfect 
squares, and hence cannot itself be a perfect square. The equation above certainly implies 
that D > (2y2 − 1)2 

. On the other hand, for y > 7 we have 4y2 > 142 = 196, thus implying 
that D < 4y4 = (2y2)2 

. Hence for y > 7 we have � �2 � �2 
2y 2 − 1 < D < 2y 2 , 

thus implying that D cannot be a perfect square. Thus we must have y ≤ 7 
Note that unlike in the previous solutions, we did not make any assumptions regarding 

which one of the variables is larger. Hence a similar argument proves that x ≤ 7. One 
could then go on and check all 49 possible candidates for a solution; or write down the 
discriminant for each 7 possible values of y, check which ones are perfect squares (this occurs 
when y ∈ {1, 3, 4, 7}), ˝nd the appropriate values of x for those discriminants and conclude 
that (3, 4) and (4, 3) are the only solutions. 

Solution 3. Let n = 25 denote the number of people and m denote the number of clubs. 
25·24There are 
2 = 25 · 12 = 300 possible pairs of people, and each club of 5 people covers 

5
2 
·4 = 10 such pairs. Since no pair of people is contained in two or more distinct clubs, we 
must have 10m ≤ 300, thus implying that m ≤ 30. 

To prove that m = 30 can be attained, we place 25 people into 5×5 grid whose coordinates 
are labeled with {0, 1, 2, 3, 4}, and we identify each individual with an unique pair (i, j) ∈ 
{0, 1, 2, 3, 4} × {0, 1, 2, 3, 4}. We consider six sets of groups Ai,j for i ∈ {0, 1, 2, 3, 4} and 
j ∈ {0, 1, 2, 3, 4}, and Bi for i ∈ {0, 1, 2, 3, 4} de˝ned as follows: 

1. The group Ai,j consists of those individuals (u, v) satisfying u + i · v ≡ j (mod 5) 

2. The group Bi consists of those individuals (u, v) satisfying v = i. 
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Geometrically speaking, the groups Bi are the columns of the 5 × 5 grid, the groups A0,j are 
the rows of the 5 × 5 grid, while the groups A1,j and A4,j are the shifted diagonals of the 5 × 5 
grid (for A1,j , the diagonals go from top left to bottom right; for A4,j the diagonals go from 
bottom left to top right). The groups A2,j and A3,j are slightly harder to visualize, but they 
can be attained by considering a chess knight hopping on the 5 × 5 grid down to rows; below 
is a grid demonstrating the sets A2,j (cells marked with a given j belong to the set A2,j ). 

0 1 2 3 4 
3 4 0 1 2 
1 2 3 4 0 
4 0 1 2 3 
2 3 4 0 1 

Observe that the sets Bi clearly contain exactly 5 members: indeed, each column has 5 
individuals. Similarly, every set Ai,j contains exactly 5 members as for any v ∈ {0, 1, 2, 3, 4}, 
the value of u has to be congruent to j − i · v modulo 5, so it is uniquely determined. 

Now we are left to check that there is no pair of people (u, v) and (u1, v1) that is contained 
in two distinct groups. It is easy to check that for i =6 0, the sets Ai,j contain exactly one 
point from each row and column (this is because multiplicative inverses exist modulo 5: that 
is, for every i ∈ {1, 2, 3, 4} there exists i1 ∈ {1, 2, 3, 4} so that i · i1 ≡ 1 (mod 5)). Thus we 
may assume that u =6 u1 and v =6 v1, and hence this pair of people does not belong to any 
set Bj . If they both belong to a set Ai,j , then we must have ( 

u + iv ≡ j (mod 5) 
. 

u1 + iv1 ≡ j (mod 5) 

Subtracting gives us i (v − v1) ≡ u − u1 (mod 5). Since v =6 v1, we have v − v1 ∈ {1, 2, 3, 4}. 
As noted above, it is easy to check that multiplicative inverses exist modulo 5: that is, there 
exists α ∈ {1, 2, 3, 4} so that α (v − v1) ≡ 1 (mod 5). Multiplying both sides of the equation 
i (v − v1) ≡ u − u1 (mod 5) by α, we conclude that i ≡ α (u − u1) (mod 5). In particular, 
the value of i is uniquely determined by (u, v) and (u1, v1). But given the value of i, the 
value of i is uniquely determined as j ≡ u + iv (mod 5). Thus there can be only one such set 
Ai,j , which completes the proof. 
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