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Fuzzy logic is a generalization of classical Boolean logic. The basis
of fuzzy logic is based on fuzzy sets and subsets.

In Boolean logic, an element either belongs to a set or it does not.
This state of belonging can be characterized by j characteristic
function

j�(G) =
{

1, G ∈ �
0, G ∉ �

for all G ∈ - and � ⊂ - .

Boolean Logic vs Fuzzy Logic
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However, we encounter situations of uncertainty rather than
certainty in real life. The reason why we encounter these
ambiguous situations is that the language and linguistic variables
have an ambiguous structure.

Some linguistic variables:
1 Age
2 Height of people
3 Price of objects
4 Emotions of people, etc.
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Example

Consider that we are going to buy a car. If we describe cars over
AC10,000 as "expensive" and cars under AC10,000 as "cheap" in terms
of Boolean logic, as a result of these two propositions, we can call
both cars priced at AC11,000 and AC100,000 expensive. Or we can call
both cars priced at AC9,000 and AC1000 cheap.
However, this cannot be said to be very useful in daily life.

Examples
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Is he tall or short?



Is he tall?

Yes, he is tall/1 No, he is not tall/0

Boolean Logic

Figure: Characterization of Boolean logic
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Fuzzy logic is based on a gradation in the [0,1] range, breaking the
0-1 precision of Boolean logic.

Is he Tall?/Is
car expensive?

Very Tall/1 Very Expensive/0.9

Tall/0.7

Average/0.5

Expensive/0.8

Average/0.5

Short/0.3

Very Short/0.15

Cheap/0.2

Very Cheap/0.1
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Just as the concept of certainty can be characterized
mathematically with the help of the j function in classical set
theory, the uncertainty situation can be characterized with the help
of the membership function in fuzzy set theory. In order to model
uncertain and uncertain situations mathematically, Zadeh
proposed fuzzy logic and fuzzy set theories in 1965 (Zadeh 1965).

Definition
A fuzzy set � of a given set - is defined with a function which is
called the membership function of � and it is denoted by

� = {< G, `�(G) > |G ∈ -} .

The value `�(G) is said to be the grade of membership of the
element G to the set.

The Membership Function
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Example

The universe of discourse, men’s heights – consists of five fuzzy
sets: very short , short , average , tall and very tall . For example, a
man 180 cm tall is a member of the tall set with a degree of
membership of 0.5 and a member of the very tall set with a degree
of membership of 0.2 (Guo 2013).

Example
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Fuzzy logic (fuzzy set theory, fuzzy measure and integral theory),
which aims to solve real-life problems by modeling the
uncertainties arising from the partial membership of an element to
a set, has been generalized over time depending on the process of
modeling uncertain information.

This is a concept that has applications in many different fields such
as economics, engineering, decision-making and management
with several real life problems like
• pattern recognition,
• classification and clustering,
• decision making problems like selection problem,
• medical diagnosis etc.
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Multi-criteria decision making is the process of selecting the most
appropriate alternative among alternatives according to conflicting
criteria.

What is multi-criteria decision making?
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In the multi-criteria decision-making process, decision makers
1 evaluate each alternative under conflicting criteria and rank

the alternatives from best to worst.
2 aim to reach the "optimal choice/alternative" by taking

advantage of the fuzzy set logic technique’s ability to model
uncertain, inconsistent and incomplete information.

In this process, the decision maker can use some decision methods
in accordance with the structure of the problem:
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Fuzzy sets and logic, uncertainty, and multi-criteria
decision-making are concepts that are closely related to the field of
artificial intelligence (AI), especially in the context of explainable AI
(XAI) and machine learning.

Relation to AI: Fuzzy logic allows for reasoning under uncertainty
by handling imprecise information. It is used in AI for
decision-making in systems where information is not strictly binary
(true or false), providing a more flexible and human-like approach
to processing information. Uncertainty is a fundamental aspect of
AI, as real-world situations often involve incomplete or ambiguous
information. AI models need to handle uncertainty to make
informed decisions.

Relations
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Relation to XAI and ML: In XAI, fuzzy logic can enhance
interpretability by allowing models to express uncertainty and deal
with imprecise data. It enables more transparent decision-making,
making it easier for humans to understand and trust AI systems. In
machine learning, fuzzy systems are applied for tasks involving
uncertainty and vagueness, contributing to model interpretability.
Dealing with uncertainty is crucial for XAI, where providing
explanations for model predictions becomes challenging in
uncertain environments. In machine learning, techniques such as
probabilistic models and Bayesian approaches address uncertainty,
contributing to both model interpretability and reliability.
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Relation to AI: MCDM involves making decisions based on multiple
criteria or objectives. In AI, MCDM is applied to complex
decision-making scenarios where multiple factors need to be
considered.

Relation to XAI and ML: In XAI, explaining decisions derived from
MCDM models becomes essential for transparency. MCDM
techniques are used in machine learning to handle complex
decision spaces and enable models to make choices based on
multiple criteria, contributing to interpretable and explainable
models.

In summary, these concepts are integral to the broader field of AI,
contributing to the development of more interpretable and
understandable machine learning models. They play a crucial role
in addressing challenges related to uncertainty, imprecision, and
complex decision-making, which are essential considerations in
both the development and explanation of AI systems.
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Aim of this presentation is that to propose an MCDM
(“multi-criteria decision-making”) algorithm by utilizing C-IFS
(“circular intuitionistic fuzzy sets”) features, which is a more reliable
tool to handle the uncertainties in the data.

• Firstly, I extend the theory of C-IFS and defines some algebraic
aggregation operators based on Archimedean t-norms
operations between the pairs of C-IFSs.
• Further, I define an EDAS (“Evaluation Based on Distance from

Average Solution”) method for MCDM problems using the
subtraction and division operations.
• The performance of the stated MCDM algorithm is discussed

through numerical examples and compared their study with
the existing approaches.

What is aim of the presentation and its Structure?
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1 There is no work on the EDAS method for C-IFSs.
2 Scores of average solutions are used rather than intermediate

solutions while applying the EDAS method, and so the
algebraic operations of scalars are enough to apply the EDAS
method. This situation can be accepted as a limitation of the
EDAS method.

So, I aim to remove this restriction of the EDAS method for C-IFSs
by defining the subtraction and division operations for C-IFSs and
circular intuitionistic fuzzy values (C-IFVs) with the help of C-norms
and C-conorms.

What is missing in the literature?

19/45 Ezgi TÜRKARSLAN An Extended EDAS Method



• ( Atanassov 1986), defined the concept of IFS (“Intuitionistic
fuzzy set”) in which a new degree named as non-membership
function i ∈ [0, 1] is added along with membership function
e ∈ [0, 1] such that e + i ∈ [0, 1].

• (Atanassov 2020), expanded this concept to C-IFS (“circular
intuitionistic fuzzy set”) by considering the circles with center
(e�(G), i�(G)) instead of points. Each element in a C-IFS is
represented by a circle whose center is (e�(G), i�(G)) and radius
0 ≤ A ≤ 1. In this C-IFS, the sum of the “degrees of
memberships” within this circle is at most equal to one.

IFS versus C-IFS
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Namely, this concept expresses the elements of - with circles
instead of points of the intuitionistic fuzzy environment and better
models for ambiguous and inconsistent information than the
concept of IFS. As a result, the idea of C-IFS allows decision-makers
to define degrees as circular membership functions.

Definition
A C-IFV U is characterized by a membership degree eU ∈ [0, 1], a
non-membership degree iU ∈ [0, 1] and a radius AU ∈ [0, 1] with
eU + iU ≤ 1 and denoted by

U = ((eU, iU) ; AU) .
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C-IFVs are introduced as extensions of the IFVs in which each
element is represented by a circle with the center of membership
degree and non-membership degree (see Figure ).

Figure: Geometric representation of C-IFVs
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The concepts of C-norm and C-conorm are often used to define
algebraic operations and aggregation operators for fuzzy sets. In
addition, additive generators of C-norms and C-conorms play an
important role while defining the algebraic operators.

Definition
The functions ), ( : [0, 1]2 → [0, 1] is called a C-norm (or cornorm) if it
satisfy the Commutativity, Monotonicity, Associativity and identity
properties.

Definition
A function # : [0, 1] → [0, 1] is called a fuzzy negator if for any
G, H ∈ [0, 1]: # is continuous; # (0) = 1, # (1) = 0 and # (G) ≥ # (H) for G ≤ H.

The concepts of C−Norm and C−Conorm

23/45 Ezgi TÜRKARSLAN An Extended EDAS Method



Definition
A decreasing function 6C : [0, 1] → [0,∞] with 6C (1) = 0 is called the
additive generator of ) given by ) (G, H) = 6−1C (6C (G) + 6C (H)), while
ℎC (C) = 6C (# (C)) is the additive generator of (. A C-norm ) is called
“Archimedean” if ) (G, G) < G for any G ∈ [0, 1].

Definition
A (), (, #) is said to be a dual triple, if ) (G, H) = # (((# (G), # (H))) and
((G, H) = # () (# (G), # (H))) holds. Here, the term ((G, H) dual C-conorm
of ) whenever # (# (G)) = G for any G ∈ [0, 1].”

The subtraction and division for C-IFVs can be proposed by using
dual triples (), (, #� ) where #� (G) = 1 − G.

Atanassov 2020 has defined some algebraic operations for C-IFVs
by considering the minimum C-norm and its dual C-conorm,
maximum C-conorm, for the radius. Here instead of particular
C-norms and C-conorms we use general ones to define algebraic
operations and give some theoretical information.
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Definition
Let (), (, #� ) be a dual triple and let ' be a C-norm or a C-conorm.
Then for C-IFVs U = ((e0 , iU); AU), V =

(
(eV , iV); AV

)
and _ ≥ 0

i) U ⊕' V =
( (
(

(
e0 , eV

)
, )

(
i0 , iV

) )
; '(AU, AV)

)
,

ii) U ⊗' V =
( (
)

(
e0 , eV

)
, (

(
i0 , iV

) )
; '(AU, AV)

)
.

In addition; if ) , ( and ' are Archimedean, 6 is “the additive
generator” of ) , ℎC (C) = 6C (#� (C)) and d is “the additive generator” of
', then
iii) _'U =

( (
ℎ−1C (_ℎ (e0)) , 6−1C (_6 (i0))

)
; d−1 (_d (AU))

)
,

iv) U_' =
( (
6−1C (_6 (e0)) , ℎ−1C (_ℎ (i0))

)
; d−1 (_d (AU))

)
.

Remark
If we take 6C (C) = − log C, the “additive generator of the Algebraic
C-norm” and '(G, H) = min/max{G, H}, then
i) U ⊕min V =

( (
e0 + eV − e0eV , i0iV

)
;min{AU, AV}

)
,

ii) U ⊕max V =
( (
e0 + eV − e0eV , i0iV

)
;max{AU, AV}

)
,

iii) U ⊗min V =
( (
e0eV , i0 + iV − i0iV

)
;min{AU, AV}

)
,

iv) U ⊗max V =
( (
e0eV , i0 + iV − i0iV

)
;max{AU, AV}

)
.

Proposed operational laws
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The inverses of operations ⊕min,⊕max, ⊗min and ⊗max do not exist in
general, but some certain circumstances. While defining the
inverse operations, we use the function C : R→ [0, 1] defined by

C(G) =


0 , if G < 0
G , if 0 ≤ G ≤ 1
1 , if G > 1.

Moreover, function C guaranties AU⊕'V ∈ [0, 1].
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Definition
Let () , (, #� ) be a dual triple and d be “the additive generator of Archimedean t-norm
'”. Then for C-IFVs U = ( (e0 , iU); AU) , V =

(
(eV , iV); AV

)
i)

U 	' V =


©«

(
ℎ−1C

(
ℎ (e0) − ℎ

(
eV

) )
,

6−1C
(
6 (i0) − 6

(
iV

) ) )
;

C(d−1
(
d (AU) − d

(
AV

) )
)

ª®¬ , if 0 ≤ ℎ (e0) − ℎ
(
eV

)
≤ 6 (i0) − 6

(
iV

)
(
(0, 1); C(d−1

(
d (AU) − d

(
AV

) )
)
)

, otherwise,
ii)

U �' V =


©«

(
6−1C

(
6 (e0) − 6

(
eV

) )
,

ℎ−1C
(
ℎ (i0) − ℎ

(
iV

) ) )
;

C(d−1
(
d (AU) − d

(
AV

) )
)

ª®¬ , if 0 ≤ ℎ (i0) − ℎ
(
iV

)
≤ 6 (e0) − 6

(
eV

)
(
(1, 0); C(d−1

(
d (AU) − d

(
AV

) )
)
)

, otherwise.

If we take 6C (C) = − log C in above definition, then we obtain
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Remark

i) U 	' V =



((
e0 − eV
1 − eV

,
i0

iV

)
;min

{
1,
AU

AV

})
, if 1 ≤

1 − eV
1 − eU

≤
iV

i0(
(0, 1);min

{
1,
AU

AV

})
, otherwise,

whenever d(C) = − log C ,

ii) U 	' V =



((
e0 − eV
1 − eV

,
i0

iV

)
;max

{
0,
AU − AV
1 − AU

})
, if 1 ≤

1 − eV
1 − eU

≤
iV

i0(
(0, 1);max

{
0,
AU − AV
1 − AU

})
, otherwise,

whenever d(C) = − log(1 − C) ,

iii) U �' V =



((
e0

eV
,
i0 − iV
1 − iV

)
;min

{
1,
AU

AV

})
, if 1 ≤

1 − iV
1 − iU

≤
eV

e0(
(1, 0);min

{
1,
AU

AV

})
, otherwise,

whenever d(C) = − log C ,

iv) U �' V =



(
e0

eV
,
i0 − iV
1 − iV

;max

{
0,
AU − AV
1 − AU

} )
, if 1 ≤

1 − iV
1 − iU

≤
eV

e0(
(1, 0);max

{
0,
AU − AV
1 − AU

})
, otherwise

whenever d(C) = − log(1 − C) .
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Definition
For a collection of {U1, ..., U=}, a “weighted arithmetic and
geometric” operator is defined as

,����' (U1, ..., U=) := l1'U1 ⊕' ... ⊕' l='U= =: (')
=⊕
8=1

l8'U8 (1)

and

,����' (U1, ..., U=) := U
l1'

1 ⊗' ... ⊗' U
l='
= =: (')

=⊗
8=1

U
l8'
8

(2)

where l8' ∈ [0, 1] is a weight vector with
=∑
8=1

l8' = 1.

Proposed operators
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Theorem
,���� (U1, ..., U=) and ,���� (U1, ..., U=) defined in above definition
are C-IFVs where

,����' (U1, ..., U=) =

©«

(
ℎ−1C

(
=∑
8=1

l8' ℎC (eU8 )
)
, 6−1C

(
=∑
8=1

l8'6C (iU8 )
))

;

d−1
(
=∑
8=1

l8' d(AU8 )
) ª®®®®®¬

(3)

and

,����' (U1, ..., U=) =

©«

(
6−1C

(
=∑
8=1

l8'6C (eU8 )
)
, ℎ−1C

(
=∑
8=1

l8' ℎC (iU8 )
))

;

d−1
(
=∑
8=1

l8' d(AU8 )
) ª®®®®®¬

.

(4)
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Remark
i) If 6C (C) = − log C , ℎC (C) = − log(1 − C) and d(C) = − log C in above definition, then we have

, ����� (U1 , ..., U=) =
((
1 −

=∏
8=1

(
1 − eU8

)l8' , =∏
8=1

i
l8'
U8

)
;

=∏
8=1

A
l8'
U8

)
and

,����� (U1 , ..., U=) =
((

=∏
8=1

e
l8'
U8

, 1 −
=∏
8=1

(
1 − iU8

)l8' )
;

=∏
8=1

A
l8'
U8

)
which are called the “Type I Algebraic weighted arithmetic and geometric
aggregation operators”, respectively.
ii) If 6C (C) = − log C , ℎC (C) = − log(1 − C) and d(C) = − log(1 − C) in above definition, then we
have

, �� ���� (U1 , ..., U=) =
((
1 −

=∏
8=1

(
1 − eU8

)l8' , =∏
8=1

i
l8'
U8

)
; 1 −

=∏
8=1

(
1 − AU8

)l8' )
and

,�� ���� (U1 , ..., U=) =
((

=∏
8=1

e
l8'
U8

, 1 −
=∏
8=1

(
1 − iU8

)l8' )
; 1 −

=∏
8=1

(
1 − AU8

)l8' )
which are called the “Type II Algebraic weighted arithmetic and geometric
aggregation operators”, respectively.
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In this section, we provide an extended EDAS method with C-IFS
environment by using the subtraction and division operations. We
assume that one of ' and & is an Archimedean C-norm and other
one is the dual C-conorm of this C-norm.
• Step 1: Construct a MCDM problem with < alternatives
{A1,A2...,A<} and = criteria {G1, ..., G=}.

• Step 2: Evaluate each alternative under each criteria and
recorded their information in terms of C-IFV and hence
summarized in a decision matrix L as

L =


;11 · · · ;1=
.
.
.

. . .
.
.
.

;<1 · · · ;<=


where ;8 9 is a C-IFV for each 8 = 1, ..., < and 9 = 1, ..., =.

Proposed EDAS method
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• Step 3: Obtain an average solution by

�+ :=
[
�+ 9

]
1×=

where
�+ 9 = ,����' (;1 9 , ..., ;= 9 ) ∈ � − ��+ (-)

or
�+ 9 = ,����' (;1 9 , ..., ;= 9 ) ∈ � − ��+ (-)

with the weights l8' =
1

<
for any 8 = 1, ..., <.

• Step 4: Evaluate the positive distance 3+ =
[
3+
8 9

]
and the

negative distance 3− =

[
3−
8 9

]
from the average solution where

3+8 9 =
(
;8 9 	' �+ 9

)
�& �+ 9 ,

3−8 9 =
(
�+ 9 	' ;8 9

)
�& �+ 9

whenever G 9 is the “benefit criteria” and whenever G 9 is the
“cost criteria”

3+8 9 =
(
�+ 9 	' ;8 9

)
�& �+ 9 ,

3−8 9 =
(
;8 9 	' �+ 9

)
�& �+ 9 .
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• Step 5: Calculate the weighted sums for F3+
8

and F3−
8

by

F3+8 = ,����' (3+81, ..., 3
+
8<) ;F3+8 = ,����' (3+81, ..., 3

+
8<)

and

F3−8 = ,����' (3−81, ..., 3
−
8<) ;F3−8 = ,����' (3−81, ..., 3

−
8<)

with l8' ∈ [0, 1] is a weight vector and
=∑
8=1

l8' = 1.

• Step 6: Defuzzify F3+
8

and F3−
8

for each 8 = 1, ..., < by using the relative score
function (RSF) of Kahraman 2022 and obtain

�F3+8 =

©«

1

AF3+
8©«

<∑
8=1

1

A2
F3+
8

ª®¬
1/2

ª®®®®®®®®¬

0.01 (
1 − iF3+

8

) (
1 + eF3+

8

)
3

∈ [0, 1]

and

�F3−8 = 1 −

©«

1

AF3−
8©«

<∑
8=1

1

A2
F3−
8

ª®¬
1/2

ª®®®®®®®®¬

0.01 (
1 − iF3−

8

) (
1 + eF3−

8

)
3

∈ [0, 1].
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• Step 7: Evaluate the appraisal score (AS) for each alternative
8 = 1, ..., < by

�(8 =
�F3+

8
+ �F3−

8

2

and “rank the alternatives” with respect to �( values. The
alternative with the “highest �(8” value is “the best alternative”.

Remark
Contrary to classical EDAS method normalization step of weighted
sums for 3+ and 3− is not needed in the extended EDAS method
since F3+

8
, F3−

8
are still C-IFVs naturally.
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The steps of the proposed extended EDAS method is visualized in
Figure below:

Figure: Flowchart of the proposed extended EDAS method
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To illustrate the stated method, we take an example from the
literature Kahraman 2022. This is an MCDM problem with three
alternatives A1,A2,A3 and three criteria C1, C2, C3. The decision
matrix related to this problem is listed in Table Kahraman 2022
below:

Table: Input data related to the given alternatives

C1 C2 C3
A1 ((0.381, 0.567) ; 0.308) ((0.412, 0.497) ; 0.081) ((0.566, 0.359) ; 0.122)

A2 ((0.466, 0.446) ; 0.269) ((0.443, 0.477) ; 0.154) ((0.649, 0.267) ; 0.129)

A3 ((0.316, 0.536) ; 0.203) ((0.383, 0.539) ; 0.252) ((0.494, 0.442) ; 0.143)

So, Steps 1 and 2 are applied.

A MCDM problem
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• Step 3: By using ,����� operator, given in (i) of above remark,
we compute the average solution and the result is obtained as

�+ =

{
(C1, ((0.3908, 0.5137) ; 0.2562)) , (C2, ((0.4097, 0.5037) ; 0.1465)) ,

(C3, ((0, 5744, 0.3486) ; 0.1310))

}
However, by using other proposed operators, the average
solutions are listed in Table below:

Table: The average solutions

C1 C2 C3

�+ (, ����� ) ( (0.3908, 0.5137) ; 0.2562)( (0.4097, 0.5037) ; 0.1465)( (0, 5744, 0.3486) ; 0.1310)

�+ (,����� ) ( (0.3828, 0.5190) ; 0.2562)( (0.4088, 0.5050) ; 0.1465) ( (0.5661, 0.3600) ; 0.1310)

�+ (, �� ���� )( (0.3908, 0.5137) ; 0.2613)( (0.4097, 0.5037) ; 0.1653) ( (0.5744, 0.3486) ; 0.1314)

�+ (,�� ���� )( (0.3828, 0.5190) ; 0.2613)( (0.4088, 0.5050) ; 0.1653)( (0.5661, 0.3600) ; 0.1314) .
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• Step 4: Compute the 3+ and 3− from average solution and
results are listed in First and second Tables, respectively.

Table: Positive distance from the average solution matrix with respect to
, �����

C1 C2 C3

A1 ( (0, 1) ; 1) ( (0.0096, 0.9733) ; 0.4762) ( (0, 1) ; 0.9206)

A2 ( (0.3159, 0.7291) ; 1) ( (0.0964, 0.8933) ; 1) ( (0.3051, 0.6406) ; 0.9820)

A3 ( (0, 1) ; 0.7208) ( (0, 1) ; 1) ( (0, 1) ; 1)

Table: Negative distance from the average solution matrix with respect to
, �����

C1 C2 C3

A1 ( (0.0405, 0.8066) ; 0.7739) ( (0, 1) ; 1) ( (0.0338, 0.9556) ; 1)

A2 ( (0, 1) ; 0.9361) ( (0, 1) ; 0.9428) ( (0, 1) ; 1)

A3 ( (0.2798, 0.9144) ; 1) ( (0.1056, 0.868) ; 0.5094) ( (0.2767, 0.6756) ; 0.9038)
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• Step 5: Taking the equal weights l8 =
1

3
for the criteria, the

computed values of the weighted sums F3+
8

and F3−
8

are given
as

F3+1 = ((0.0032, 0.9910) ; 0.7597) ; F3−1 = ((0.0249, 0.9169) ; 0.9181) ;

F3+2 = ((0.2455, 0.7472) ; 0.9940) ; F3−2 = ((0, 1) ; 0.9592)
F3+3 = ((0, 1) ; 0.8966) ; F3−3 = ((0.2248, 0.8124) ; 0.7722)

• Step 6: The defuzzified values F3+
8

and F3−
8

are obtained as

�F3+1 = 0.003 ; �F3+2 = 0.1043 ; �F3+3 = 0

�F3−1 = 0.0282 ; �F3−2 = 0 ; �F3−3 = 0.0763

• Step 7: The appraisal score �(8 is evaluated as �(1 = 0.4874
�(2 = 0.5522 and �(3 = 0.4619. Hence, we get the ranking
�2 � �1 � �3 with respect to weighted aggregation operator
,�����.
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When we also solve the same MCDM problem with the
aggregation operators ,� ����, ,�� ���� and ,� � ����, we obtain
exactly the same ranking �2 � �1 � �3. Note also that these results
are in agreement with the result of Kahraman 2022.

Figure: Comparison of the rankings with respect to all weighted
aggregation operators

Comparison with the Remaining A.O.
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In this sub-section, we compare the proposed extended EDAS
method with several current decision making techniques to
evaluate its reliability and effectiveness:

Table: Comparison of result of existing methods

Existing Scores
Ranking

Best

Methods �1 �2 �3 Selection

VIKOR (pessimistic) method
by Kahraman and Otay,2022 0.7050 0.0000 0.9650 �2 > �1 > �3 �2

VIKOR (optimistic) method by
Kahraman and Otay,2022 0.2940 1.000 0.0000 �3 > �1 > �2 �3

TOPSIS method by
Alkan and Kahraman,2022 0.5178 0.6146 0.3469 �2 > �1 > �3 �2

AHP-VIKOR method by
Otay and Kahraman,2022 0.6720 0.0000 1.0000 �2 > �1 > �3 �2

Comparison with TOPSIS, VIKOR and AHP-VIKOR
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Now, we evaluate the ranking consistency of the MCDM problem
by using Eq. (5) of the “Spearman’s Rank Correlation Coefficient”
and the test results are shown in Table below:

d =: 1 − 6

=(=2 − 1)

=∑
8=1

328 , (5)

where = is the number of results, and 38 denotes the difference in
the results’ ranks.
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Table: The Spearman’s rank correlation coefficient for MCDM problem

Method , ����� ,����� , �� ���� ,�� ����

VIKOR (pessimistic) method
by Kahraman and Otay,2022 1 1 1 1
VIKOR (optimistic) method

by Kahraman and Otay,2022 -1 -1 -1 -1
TOPSIS method

by Alkan and Kahraman,2022 1 1 1 1
AHP-VIKOR method

by Otay and Kahraman,2022 1 1 1 1

The obtained values are considered as highly valid range because they are greater
than 0.71 Spearman,1987 except for the result of Kahraman and Otay,2022’s method
based on VIKOR (optimistic). According to the above Table, it is seen that the results
obtained with the pessimistic perspective or the combination of pessimistic and
optimistic perspectives as in Otay and Kahraman,2022 are compatible with the results
obtained in this paper, but the results obtained by solving with the optimistic
perspective are both with the results obtained by the pessimistic method and the
results obtained in this paper indicates inconsistency.
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