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Intuition

perfect fit

Function space Parameter space

Figure 1: In an overparametrized model, there may be many di↵erent
parameters and model functions that perfectly fit the training data
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Motivation

• Neural networks in practice are often overparameterized
- Number of model parameters � Number of training samples
- Can fit random labels

• Many global minima fit the training data perfectly
- Most of them generalize horribly

• Nevertheless, deep models often generalize well, even without
any explicit regularization

• The capacity of the hypothesis class alone does not explain this1

1Zhang et al. 2021.Montúfar 2024 5/40



Motivation

• One possible explanation is that optimization algorithms are
implicitly biased towards selecting simple solutions

• Question: What kinds of minima does an optimization algorithm
converge to?
- Examples: maximum margin classifier, smooth interpolation, sparse
function, ...

- Depends on loss function, optimization algorithm, learning model, ...
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Factors

• Loss: `2 loss (for regression); logistic loss (for classification).

• Optimization algorithm: gradient descent; stochastic gradient
descent; mirror descent; steepest descent.

• Learning model: linear models; linear neural networks; neural
networks; parametrization

• Hyperparameters: learning rate; initialization; mini-batch size;
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Gradient Descent

Consider the following linear model with loss function `(y1, y2):

L(w) =
nX

i=1

`(hxi ,wi, yi ),

and the gradient descent iterations

wt+1 = wt � ⌘rL(wt) = wt � ⌘
nX

i=1

r1`(hxi ,wti, yi ) · xi .
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Gradient Descent

Theorem 1 (Gunasekar et al. 2018a)

Consider a convex loss function ` with a unique finite minimizer
(`(y1, y2) = 0 i↵ y1 = y2). Assume that the gradient descent
iteration converges to the global minimum of L(w) with zero loss,
i.e., L(wt) ! 0. Then the algorithm returns the unique solution of
following constrained optimization problem:

min
w

kw � w0k2 s.t. hxi ,wi = yi , i = 1, . . . , n. (1)

The key idea is that the gradients are restricted to a n-dimensional
subspace that is spanned by {xi}ni=1 and is independent of w .
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Proof
Gradient Descent.

• Let w1 = limt!1 wt . By assumption, hxi ,wi = yi , i = 1, . . . , n.
The gradient descent iteration gives

w1 = w0 �
1X

t=0

⌘
nX

i=1

r1`(hxi ,wti, yi ) · xi

= w0 � ⌘
nX

i=1

xi

1X

t=0

r1`(hxi ,wti, yi ).

• The constrained optimization problem (1) is strongly convex.
The first order optimality condition is

(
w � w0 +

Pn
i=1 �ixi = 0,

hxi ,wi = yi , i = 1, . . . , n.
(2)

• Setting �i =
P1

t=0r1`(hxi ,wti, yi ), one has that w1 satisfies
(2). So w1 is the solution of problem (1).
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Mirror Descent

Given a strongly convex and di↵erentiable potential �, the mirror
descent updates are:

wt+1 = argmin
w

⌘hw ,rL(wt)i+ D�(w ,wt),

where D�(w ,w 0) = �(w)� �(w 0)� hr�(w 0),w � w 0i is the
Bregman divergence with respect to �.

The first order optimality condition for the parameter update gives

r�(wt+1) = r�(wt)� ⌘rL(wt).

Examples of �:

• `2 norm: �(w) = 1
2kwk22, which leads to gradient descent;

• unnormalized negative entropy: �(w) =
P

i wi logwi � wi .
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Mirror Descent

Theorem 2 (Gunasekar et al. 2018a)

For any strongly convex potential �. Assume that the mirror
descent iteration converges to the global minimum of L(w) with
zero loss, i.e., L(wt) ! 0. Then the algorithm returns the solution
of following constrained optimization problem:

min
w

D�(w ,w0) s.t. hxi ,wi = yi , i = 1, . . . , n. (3)

The key idea is that r�(wt+1) (called dual iterates) are restricted
to a n-dimensional manifold r�(w0) + span({xi}).
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Proof

Mirror Descent.

The constrained optimization problem (3) is strongly convex.
The first order optimality condition of the problem is

(
r�(w)�r�(w0) +

Pn
i=1 �ixi = 0,

hxi ,wi = yi , i = 1, . . . , n.
(4)

Since

r�(wt+1) = r�(wt)� ⌘rL(wt)

r�(w1) = r�(w0)� ⌘
nX

i=1

xi

1X

t=0

r1`(hxi ,wti, yi ).

One sees that w1 satisfies (4). So w1 is the solution of (3).
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Reparametrization and change of geometry

• D� can be approximated locally by a quadratic function

D�(w ,w 0) = (w � w 0)Tr2�(w 00)(w � w 0).

• If we use D�(w ,w 0) = (w � w 0)TK (w � w 0), the mirror descent
iterations become:

wt+1 = wt � ⌘K�1rL(wt).

• For mirror descent we have the update rule:

wt+1 = wt � ⌘(r2�(w 00))�1rL(wt).

• If step size goes to 0, we have the following gradient flow:

ẇt = �(r2�(wt))
�1rL(wt).
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Reparametrization and change of geometry

• Consider the least squares problem and reparametrization:

L(w) = 1
2

nX

i=1

(hxi , ui � yi )
2 = 1

2kXu � yk22,

where X = [x1, . . . , xn] and u = (w2
1 , . . . ,w

2
d ) is the entry-wise

square of w .
• The gradient flow over w is

ẇ(t) = �rwL(w(t)).

• If we consider the space of u, the above iteration becomes

u̇(t) = Dw · ẇ(t) = �Dw ·rwL(w(t))

= �2Dw · Dw · XT (Xu � y)

= �2Du · XT (Xu � y)

= �2Du ·ruL(u(t)),

where Du = diag(u) and Dw = diag(w).

Example taken from 18.408 Lecture 4: https://people.csail.mit.edu/moitra/408b.htmlMontúfar 2024 15/40
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Reparametrization and change of geometry

If we let �(u) =
Pd

i=1(ui log ui � ui ), then we have

(r2�(u(t)))�1 = Du.

Then we can show that the following two iterations are equivalent:

1. Gradient descent under square parametrization;

2. Mirror descent under �(u).

According to the implicit bias of mirror descent, u(t) converges to
the solution of the following optimization problem:

min
u

D�(u, u0) s.t. hxi , ui = yi , i = 1, . . . , n.

If u0 = ↵1: as ↵ ! 0, we have D�(u, u0) ! C↵kuk1.
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Classification

In classification problems, gradient descent on linear models
converges to the `2 maximum margin solution if training data is
linearly separable2

Figure 2: Implicit bias of gradient descent for classification problems.

2Soudry et al. 2018.Montúfar 2024 17/40



Classification: Linear Classifier

• Consider binary classification problem yi 2 {�1,+1}
• Linear decision boundaries f (x) = hxi ,wi
• Decision rule ŷ(x) = sign(f (x))

• Consider the exponential loss function `(y1, y2) = exp(�y1y2),

L(w) =
nX

i=1

`(hxi ,wi, yi )

• Gradient descent iteration

wt+1 = wt � ⌘rL(wt) = wt � ⌘
nX

i=1

`(hxi ,wti, yi )(�xiyi )

• If the dataset is linearly separable, L(w) ! 0 only as kwk ! 1.

• Study the limit direction w̄1 = limt!1
wt

kwtk .
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Classification: Linear Classifier

Theorem 3 (Soudry et al. 2018)

For any dataset which is linearly separable, suitable learning rate ⌘,
and any starting point w0,

wt
kwtk converges to the unique solution of

the SVM problem:

max
w

min
i

yi hxi ,wi s.t. kwk2  1.
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Classification: Linear Classifier

Proof idea.

• Suppose wt
kwtk converges to some limit w̄1, so

wt = g(t)w̄1 + ⇢(t) with g(t) ! 1 and limt!1
⇢(t)
g(t) = 0.

• The gradient at wt is given by:

rL(wt) =
nX

i=1

exp(�wT
t xi )xi

=
nX

i=1

exp(�g(t)w̄T
1xi ) exp(�⇢(t)T xi )xi

• As g(t) ! 1, only those samples with the largest exponents will
contribute to the gradient. So wt are asymptotically dominated
by a non-negative linear combination of support vectors. These
are precisely the KKT conditions for the SVM problem.
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Classification: Steepest Descent

Steepest descent with respect to a generic norm is given by:

wt+1 = wt + ⌘t�wt , where �wt = argminhrL(wt), vi+
1

2
kvk2.

For classification problem we consider the exponential loss.

Theorem 4 (Gunasekar et al. 2018a)

For any dataset which is linearly separable, any norm k · k, suitable
learning rate ⌘ and any starting point w0,

wt
kwtk converges to the

solution of the optimization problem:

max
w

min
i

yi hxi ,wi s.t. kwk  1.
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Implicit Bias for Linear Networks

• Deep linear networks can be regarded as parameterizations of
linear models.

• Gunasekar et al. 2018b showed that gradient descent on
full-width linear convolutional networks of depth L converges to a
linear predictor related to the `2/L penalty in frequency domain.

• And gradient descent on fully-connected linear networks
converges to `2 maximum margin solution regardless of depth.

• This elucidates the impact of the network architectures.

• The approximation ability may be the same, but the implicit bias
of gradient descent is di↵erent.
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1 Implicit Bias and Algorithmic Regularization

2 Implicit Bias in Wide Shallow ReLU Networks
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Implicit bias of gradient descent

• Consider a shallow ReLU network with n hidden units,

f (x , ✓) =
nX

i=1

W (2)
i [hW (1)

i , xi+ b(1)i ]+ + b(2).

• Initialize the parameters by independent samples of (W,B).
• For data {(xj , yj)}Mj=1, select a function by gradient descent

minimization of the squared error L(✓) =
PM

j=1 kf (xj , ✓)� yjk2.

We discuss results for shallow ReLU networks from Jin and Montufar 2023.Montúfar 2024 24/40



• Consider first the univariate setting, x 2 R.
• A rectified linear unit [wix + bi ]+ has breakpoint at ci = �bi/wi .

• A density pW,B induces a breakpoint density pC .
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Implicit bias of GD in wide ReLU networks

Theorem 5 (Univariate regression)

• Consider a feedforward network with a single input unit, a
hidden layer of n rectified linear units, skip connections, and a
single linear output unit.

• Assume standard parametrization and that for each hidden unit
the input weight and bias are initialized from a sub-Gaussian
(W,B) with joint density pW,B.

• Then, for any finite data set {(xj , yj)}Mj=1 and su�ciently large n
optimization of the MSE by full-batch gradient descent with
su�ciently small step size converges to a parameter ✓⇤ for which
the output function f (x , ✓⇤) attains zero training error.

• Moreover,
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Implicit bias of GD in wide ReLU networks

Theorem 5 (Univariate regression)

letting

⇣(x) =

Z

R
|W |3pW,B(W ,�Wx) dW

and S = supp(⇣) \ [mini xj ,maxi xj ], we have

kf (x , ✓⇤)� g⇤(x)k2 = O(n�
1
2 ), x 2 S

with high probability over the random initialization ✓0, where g⇤

solves following variational problem:

min
g2C2(S)

Z

S

1

⇣(x)
(g 00(x)� f 00(x , ✓0))

2 dx

subject to g(xj) = yj , j = 1, . . . ,M.

(5)
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Numerical illustration

Uniform error between g⇤ and f (·, ✓⇤)

n = 160 n = 640

n = 2560 n = 10240

� f (·, ✓⇤) � g⇤
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The curvature penalty function

Solution g⇤

⇣

• The reciprocal curvature penalty is
⇣(x) =R
R |W |3pW,B(W ,�Wx) dW .

• We obtain the explicit form of ⇣ for
various initialization procedures.

• We obtain parameter initialization
procedures leading to any desired ⇣.
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Explicit form of the curvature penalty

Theorem 6 (Curvature penalty for various initializations)

1. Gaussian initialization. Assume that W and B are independent,
W ⇠ N (0,�2

w ) and B ⇠ N (0,�2
b). Then ⇣ is given by

⇣(x) =
2�3

w�
3
b

⇡(�2
b+x2�2

w )2
.

2. Binary-uniform initialization. Assume that W and B are
independent, W 2 {�1, 1} and B ⇠ U(�ab, ab) with ab � L.
Then ⇣ is constant on [�L, L].

3. Uniform initialization. Assume that W and B are independent,
W ⇠ U(�aw , aw ) and B ⇠ U(�ab, ab) with

ab
aw

� L. Then ⇣ is
constant on [�L, L].
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Gaussian initialization

Gaussian initialization �2
B = 1

n = 20 n = 80

n = 320 n = 1280

� f (·, ✓⇤) � g⇤

Figure 3: Initialization W ⇠ N(0, 1) and B ⇠ N(0, 1).
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Sharp Gaussian initialization

Gaussian initialization �2
B = 0.1

n = 20 n = 80

n = 320 n = 1280

� f (·, ✓⇤) � g⇤

Figure 4: Initialization W ⇠ N(0, 1) and B ⇠ N(0, 0.1). In this case ⇣
that is more peaked at x = 0. Solutions more curvy around x = 0.
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Exploiting the initialization

• With the presented bias description we can formulate heuristics
for parameter initialization either to ease optimization or also to
induce specific smoothness priors on the solutions.

• In particular, any curvature penalty 1/⇣ can be implemented by
an appropriate choice of the initialization distribution.

Proposition 7 (Constructing any curvature penalty)

Given any function % : R ! R>0, satisfying Z =
R
R

1
% < 1, if we

set the density of C as pC(x) =
1
Z

1
%(x) and make W independent of

C with non-vanishing second moment, then

(E(W 2|C = x)pC(x))
�1 = (E(W 2)pC(x))

�1 / %(x), x 2 R.
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Optimization trajectory in function space

• Optimization trajectory described by smoothing splines

min
g2C2(S)

MX

j=1

[g(xj)� yj ]
2 +

1

⌘̄t

Z

S

1

⇣(x)
(g 00(x)� f 00(x , ✓0))

2 dx .
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Early stopping and spectral bias

• The result can be interpreted in combination with early stopping.

• The training trajectory is approximated by a smoothing spline,
meaning that the network will filter out high frequencies which
are usually associated to noise in the training data.

• This behavior is sometimes referred to as a spectral bias3.

3Rahaman et al. 2019.Montúfar 2024 34/40



Generalization to multivariate regression

Theorem 8 (Multivariate regression)

• Use the same network setting as in Theorem 5 except that the
number of input units changes to d .

• Assume that for each hidden unit the input weight and bias are
initialized from a sub-Gaussian (W ,B) where W is a
d-dimensional random vector and B is a random variable.

• Let U = kWk2, V = W/kWk2, C = �B/kWk2, and let pV,C
be the joint density of (V , C).

• Then, for any finite data set {(xj , yj)}Mi=1 and su�ciently large n
optimization of the MSE by full-batch gradient descent with
su�ciently small step size converges to a parameter ✓⇤ for which
f (·, ✓⇤) attains zero training error.

• Moreover,
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Generalization to multivariate regression

Theorem 8 (Multivariate regression)

letting ⇣(V , c) = pV,C(V , c)E(U2|V = V , C = c), we have

kf (x, ✓⇤)� g⇤(x)k2 = O(n�
1
2 ), x 2 Rd

(the 2-norm over Rd) whp over ✓0, where g⇤ solves

min
g2C(Rd )

Z

supp(⇣)

1

⇣(V , c)

⇣
R{(��)(d+1)/2(g � f (·, ✓0))}(V , c)

⌘2
dVdc

s.t. g(xj) = yj , j = 1, . . . ,M,

R{(��)(d+1)/2(g � f (·, ✓0))}(V , c) = 0, (V , c) 62 supp(⇣).

Here R is the Radon transform, R{f }(!, b) :=
R
h!,xi=b f (x)ds(x), and

the power of the negative Laplacian (��)(d+1)/2 is the operator defined

in Fourier domain by \(��)(d+1)/2f (⇠) = k⇠kd+1bf (⇠).
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Generalization to other activation functions

Theorem 9 (Di↵erent activation functions)

• Use the same setting as in Theorem 5 except that we use the
activation function � instead of ReLU.

• Suppose that � is a Green’s function of a linear operator L, i.e.
L� = �, where � denotes the Dirac delta function.

• Assume that the activation function � is homogeneous of degree
k , i.e. �(ax) = ak�(x) for all a > 0.

• Then we can find a function p satisfying Lp ⌘ 0 and adjust
training data {(xj , yj)}Mj=1 to {(xj , yj � p(xj)}Mj=1.
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Generalization to other activation functions

Theorem 9 (Di↵erent activation functions)

After that, the statement in Theorem 5 holds with

min
g2C2(S)

Z

S

1

⇣(x)
[L(g(x)� f (x , ✓0))]

2 dx

s.t. g(xj) = yj � p(xj), j = 1, . . . ,M,

where
⇣(x) = pC(x)E(W2k |C = x)

and S = supp(⇣) \ [mini xi ,maxi xi ].
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Generalization

From Theorem 5 we can extract generalization results such as

• In the univariate noisless model for a target g0 on [a, b], if ⇣
uniform, then

kg⇤ � g0k1  Ckg (4)
0 k1h4

where g (4) is the fourth derivative of g0 and h = maxi xi+1 � xi .

• For univariate noisy models with yj = g0(xj) + ✏j , ✏j independent
zero mean with variance �2, if xi uniform partition and ⇣
uniform, using early stopping with t = ⇥(M4/5), then

Ekg⇤ � g0k22 = O(M�4/5)

• Similar observations can be obtained in more general settings
such as non-uniform training inputs, non-constant ⇣
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Related works

• Zhang et al. 2019 described the implicit bias of gradient descent
in the kernel regime as minimizing a kernel norm from
initialization, subject to fitting the training data.

• Savarese et al. 2019 showed infinite-width networks with 2-norm
weight regularization represent functions with smallest 1-norm of
the second derivative, an example of which are linear splines.

• Williams et al. 2019 showed a similar result for univariate shallow
ReLU nets training only the output layer from zero initialization.

Montúfar 2024 38/40



Summary

• Gradient descent training of overparametrized ReLU networks is
biased towards functions with low curvature.

• The parameter initialization procedure determines the curvature
penalty function 1/⇣.

• Generalizations to multivariate ReLU networks, di↵erent
activation functions, and optimization trajectories.
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Further topics

• Spectral bias

• Implicit bias in mildly overparametrized nets

• Other optimizers and stability

• Role of the data
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Montúfar 2024 2/7

http://jmlr.org/papers/v24/21-0832.html


References III

Razin, Noam and Nadav Cohen (2020). “Implicit regularization in
deep learning may not be explainable by norms”. In: Advances in
neural information processing systems 33, pp. 21174–21187.
Savarese, Pedro et al. (2019). “How do infinite width bounded
norm networks look in function space?” In: Proceedings of the
Thirty-Second Conference on Learning Theory. Ed. by
Alina Beygelzimer and Daniel Hsu. Vol. 99. Proceedings of
Machine Learning Research. Phoenix, USA: PMLR,
pp. 2667–2690. url:
http://proceedings.mlr.press/v99/savarese19a.html.
Soudry, Daniel et al. (2018). “The implicit bias of gradient descent
on separable data”. In: Journal of Machine Learning Research 19.1,
pp. 2822–2878.
Williams, Francis et al. (2019). “Gradient dynamics of shallow
univariate ReLU networks”. In: Advances in Neural Information
Processing Systems, pp. 8378–8387.
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