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Figure 1: In an overparametrized model, there may be many different
parameters and model functions that perfectly fit the training data
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Motivation

Neural networks in practice are often overparameterized
- Number of model parameters > Number of training samples
- Can fit random labels

Many global minima fit the training data perfectly

- Most of them generalize horribly

Nevertheless, deep models often generalize well, even without
any explicit regularization

® The capacity of the hypothesis class alone does not explain this!

Montdfar 2021;hang et al. 2021.
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Motivation

® One possible explanation is that optimization algorithms are
implicitly biased towards selecting simple solutions

® Question: What kinds of minima does an optimization algorithm
converge to?

- Examples: maximum margin classifier, smooth interpolation, sparse
function, ...

- Depends on loss function, optimization algorithm, learning model, ...
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Factors

Loss: /5 loss (for regression); logistic loss (for classification).

e Optimization algorithm: gradient descent; stochastic gradient
descent; mirror descent; steepest descent.

Learning model: linear models; linear neural networks; neural
networks; parametrization

® Hyperparameters: learning rate; initialization; mini-batch size;
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Gradient Descent

Consider the following linear model with loss function £(y1, y»):

ZK Xiy W )/l

and the gradient descent iterations

Werr = we — nVL(we) = wy — nz Vil({xi, we), yi) - ;.
i=1
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Gradient Descent

Theorem 1 (Gunasekar et al. 2018a)

Consider a convex loss function ¢ with a unique finite minimizer
(U(y1,y2) = 0 iff y1 = y»). Assume that the gradient descent
iteration converges to the global minimum of L(w) with zero loss,
i.e., L(wt) — 0. Then the algorithm returns the unique solution of
following constrained optimization problem:

min|jw — wpll2 st (xj,w)=y;, i=1,...,n (1)
w

The key idea is that the gradients are restricted to a n-dimensional
subspace that is spanned by {x;}7_; and is independent of w.
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Proof

Gradient Descent.

® Let Wy = limi—yo0 wy. By assumption, (x;,w) =y;,i=1,...,n.
The gradient descent iteration gives
o0 n
Woo = w0 — > _ 1Y Val((xi, we), yi) - xi
t=0 =1
n (o]
=wo—n Y _xi > Vil((xi, we), yi)-
i=1  t=0

® The constrained optimization problem (1) is strongly convex.
The first order optimality condition is

w— Wy + 27:1 Aixi =0, (2)
(xi,w)=y;, i=1...,n
* Setting \j = > ;2o V1il({xi, wt), yi), one has that wy, satisfies
(2). So we is the solution of problem (1). O
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Mirror Descent

Given a strongly convex and differentiable potential ¢, the mirror
descent updates are:

We 1 = arg minn(w, VL(we)) + Dy(w, we),

where Dy(w, w') = ¢p(w) — d(w') — (Vp(w'), w — w') is the
Bregman divergence with respect to ¢.

The first order optimality condition for the parameter update gives

Vo(wer1) = Vo(we) — nVL(we).

Examples of ¢:
® 0> norm: ¢(w) = 3|\w||3, which leads to gradient descent;

* unnormalized negative entropy: ¢(w) =) . w; log w; — w;.
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Mirror Descent

Theorem 2 (Gunasekar et al. 2018a)

For any strongly convex potential ¢p. Assume that the mirror
descent iteration converges to the global minimum of L(w) with
zero loss, i.e., L(wy) — 0. Then the algorithm returns the solution
of following constrained optimization problem:

min Dy(w,wp) s.t. (xi,w) =y, i=1...,n (3)
w

The key idea is that V¢(wy1) (called dual iterates) are restricted
to a n-dimensional manifold Vg (wp) + span({x;}).
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Proof

Mirror Descent.
The constrained optimization problem (3) is strongly convex.

The first order optimality condition of the problem is

(xi,w)=y;, i=1...,n

{V¢(W) — V(wo) + 3071 Aixi = 0, (4)

Since

Vo(wir1) = Vo(we) — nVL(we)

Vé(woo) = Vo(wo) =1y xi > Vil((xi, we), yi)-
i=1 t=0

One sees that we satisfies (4). So wy is the solution of (3).
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Reparametrization and change of geometry

D, can be approximated locally by a quadratic function

Dy(w, w') = (w — w') V26 (w")(w — w).

If we use Dg(w,w’) = (w — w')TK(w — w’), the mirror descent
iterations become:

Wii1 = W — nK*1VL(Wt).

For mirror descent we have the update rule:
— 2 mMy—1
w1 = we — n(Vp(w”)) " VL(we).
e If step size goes to 0, we have the following gradient flow:

we = —(V2h(we)) 1V L(wy).

Montdfar 2024
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Reparametrization and change of geometry

® Consider the least squares problem and reparametrization:

2Zx,, —yi)? = 3IXu—y|3,

where X = [x1,...,x,] and u = (w2,...,w3) is the entry-wise

square of w.
® The gradient flow over w is

w(t) = =V, L(w(t)).
® |f we consider the space of u, the above iteration becomes
i(t) = Dy - (t) = —Dy - Vi L(w(t))
=—-2D,, - D, - XT(Xu—y)
= 2D, - XT(Xu—y)
= —2D, - V,L(u(t)),
where D, = diag(u) and D,, = diag(w).
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Reparametrization and change of geometry

If we let ¢p(u) = Zfi:l(u,- log uj — u;), then we have
(V2¢(u(t))) ™ = D

Then we can show that the following two iterations are equivalent:
1. Gradient descent under square parametrization;
2. Mirror descent under ¢(u).

According to the implicit bias of mirror descent, u(t) converges to
the solution of the following optimization problem:

m’jn Dy(u,up) st. (xj,u)y=y, i=1...,n

If up = al: as a — 0, we have Dy(u, up) = Collulf1.

Montdfar 2024
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Classification

In classification problems, gradient descent on linear models
converges to the £, maximum margin solution if training data is
linearly separable?

(A)

3
2 C -
+ * +
1 * +
*
£ 0
[ ]
i °
[ ]
B
3

-3 -2 -1 0 1 2 3

Figure 2: Implicit bias of gradient descent for classification problems.

2
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Classification: Linear Classifier

Consider binary classification problem y; € {—1,+1}

Linear decision boundaries f(x) = (x;, w)

Decision rule y(x) = sign(f(x))

Consider the exponential loss function £(y1, y2) = exp(—y1y2),

ZE Xi, W )/l

Gradient descent iteration

Wer1 = we — nVL(we) = we — sz«xi, we), i) (—Xiyi)
i=1

If the dataset is linearly separable, L(w) — 0 only as ||w| — oc.

e Study the limit direction Wy = lim¢_00 m
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Classification: Linear Classifier

Theorem 3 (Soudry et al. 2018)

For any dataset which is /inearly separable, suitable learning rate 7,

and any starting point wy, HW | converges to the unique solution of
the SVM problem:

max min y;(x;, w) s.t. [[w] < 1.
w i

Montdfar 2024 19/40



Classification: Linear Classifier

Proof idea.

® Suppose HWtH converges to some limit Wy, SO

w = g(t)Weo + p(t) with g(t) — oo and lims_oo g((—i =0.

—

® The gradient at w; is given by:

n
SDICLCRE
= Z exp(—g ()Wl x;) exp(—p(t) " x;)xi

® As g(t) — oo, only those samples with the largest exponents will
contribute to the gradient. So w; are asymptotically dominated
by a non-negative linear combination of support vectors. These
are precisely the KKT conditions for the SVM problem. [
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Classification: Steepest Descent

Steepest descent with respect to a generic norm is given by:
. 1, »
Wer1 = W + e Awe, where Awy = argmin(VL(wy), v) + §||VH .

For classification problem we consider the exponential loss.

Theorem 4 (Gunasekar et al. 2018a)

For any dataset which is linearly separable, any norm || - ||, suitable
learning rate n and any starting point wy, ”"Vt—;” converges to the
solution of the optimization problem:

max min y;j(x;, w) s.t. [[w| < 1.
w 1
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Implicit Bias for Linear Networks

® Deep linear networks can be regarded as parameterizations of
linear models.

® Gunasekar et al. 2018b showed that gradient descent on
full-width linear convolutional networks of depth L converges to a
linear predictor related to the {5/, penalty in frequency domain.

® And gradient descent on fully-connected linear networks
converges to ¢, maximum margin solution regardless of depth.

® This elucidates the impact of the network architectures.

® The approximation ability may be the same, but the implicit bias
of gradient descent is different.
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@® Implicit Bias in Wide Shallow ReLU Networks
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Implicit bias of gradient descent

® Consider a shallow RelLU network with n hidden units,
n

(.6 = 3 WKW, ) + 6]+ 6@,
i=1

* Initialize the parameters by independent samples of (W, B).

® For data {(xj,yj)}j‘i1 select a function by gradient descent

minimization of the squared error L(0) = Zjﬂil 1£(x;,0) — y;l|*.

Montdifar 202XV€ discuss results for shallow ReLU networks from Jin and Montufar 2023. 24 /40



e Consider first the univariate setting, x € R.
* A rectified linear unit [w;x + b;]+ has breakpoint at ¢; = —b;/w;.

® A density pyy 5 induces a breakpoint density pc.

5 one ReLU 5 several ReLUs 0.05 sum of several ReLUs
4 4

3 3 0

2 2

1 1 -0.05

0 0

1 1 -0.1

5 0 5 5 0 5 5 0 5
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Implicit bias of GD in wide ReLU networks

Theorem 5 (Univariate regression)

e Consider a feedforward network with a single input unit, a
hidden layer of n rectified linear units, skip connections, and a
single linear output unit.

® Assume standard parametrization and that for each hidden unit
the input weight and bias are initialized from a sub-Gaussian
(W, B) with joint density pyy 3.

® Then, for any finite data set {(xj,yj)}J"i1 and sufficiently large n
optimization of the MSE by full-batch gradient descent with
sufficiently small step size converges to a parameter 6% for which

the output function f(x,0*) attains zero training error.

® Moreover,

Montdfar 2024
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Implicit bias of GD in wide ReLU networks

Theorem 5 (Univariate regression)

letting
:/ (W 3w s(W, —Wx) dW
R
and S = supp(¢) N [min; x;, max; x;], we have
17,67~ 8" (x)lla = O(n2), x€$

with high probability over the random initialization 6y, where g*
solves following variational problem:

—"(x,0 dx
gec2(5) / C(x (x.60))° (5)
subject to g(xj)=y;, j=1,....,M.
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Numerical illustration

Uniform error between g* and (-, 6*)
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The curvature penalty function

® The reciprocal curvature penalty is
C(x) =
Je IWEpw s(W, —Wx) dW.

® We obtain the explicit form of { for
various initialization procedures.

® We obtain parameter initialization
procedures leading to any desired (.
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Explicit form of the curvature penalty

Theorem 6 (Curvature penalty for various initializations)

1. Gaussian initialization. Assume that VW and B are independent,
W ~ N(0,02,)) and B ~ N(0,02). Then ( is given by

o 203,02
) = Teznany:

2. Binary-uniform initialization. Assume that VW and B are
independent, W € {—1,1} and B ~ U(—ap, ap) with a, > L.
Then ¢ is constant on [—L, L].

3. Uniform initialization. Assume that VW and B are independent,
W ~U(~aw,aw) and B ~ U(—ap, ap) with 2> > L. Then ¢ is
constant on [—L, L].

Montdfar 2024 29/40



Gaussian initialization

Gaussian initialization 03 = 1

107! H
—— y=0.6021x"04%0

—$— Error

Error

102

107 10° °e
Number of neurons

Fo s o 45 oo o5 10 1% 20 Zo s 1o S5 oo o5 10 15 20

Figure 3: Initialization W ~ N(0,1) and B ~ N(0,1).
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Sharp Gaussian initialization

Gaussian initialization 03 = 0.1

y=0.6080x" ~ 04646
—$— Error

107!

Error

102 10° 104
Number of neurons

Figure 4: Initialization W ~ N(0,1) and B ~ N(0,0.1). In this case
that is more peaked at x = 0. Solutions more curvy around x = 0.
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Exploiting the initialization

® With the presented bias description we can formulate heuristics
for parameter initialization either to ease optimization or also to
induce specific smoothness priors on the solutions.

® In particular, any curvature penalty 1/{ can be implemented by
an appropriate choice of the initialization distribution.

Proposition 7 (Constructing any curvature penalty)
Given any function ¢o: R — R>o, Satisfying Z = fR L < 0, if we

set the density of C as pe(x) = *ﬁ and make W mdependent of
C with non-vanishing second moment, then

(E(W2IC = x)pe(x)) " = (E(W?)pe(x)) " o< ox), x €R.
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Optimization trajectory in function space

e Optimization trajectory described by smoothing splines

M

1 1

. 2 " 1" 2

min gxj)—yl"+ = | =—=(g"(x)—f"(x,60p))" dx.

RS R e - A LA SR CLD)
Trajectories of functions 2D PCA of the trajectories
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Early stopping and spectral bias

® The result can be interpreted in combination with early stopping.

® The training trajectory is approximated by a smoothing spline,
meaning that the network will filter out high frequencies which
are usually associated to noise in the training data.

® This behavior is sometimes referred to as a spectral bias>.

3
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Generalization to multivariate regression

Theorem 8 (Multivariate regression)

® Use the same network setting as in Theorem 5 except that the
number of input units changes to d.

® Assume that for each hidden unit the input weight and bias are
initialized from a sub-Gaussian (W, B) where W is a
d-dimensional random vector and B is a random variable.

© LetU = [W]2, ¥V = W/[[W|2, C = -B/|W]
be the joint density of (V,C).

2, and let py ¢

e Then, for any finite data set {(x;,y;)}M, and sufficiently large n
optimization of the MSE by full-batch gradient descent with
sufficiently small step size converges to a parameter 6* for which
f(-,0%) attains zero training error.

® Moreover,

Montdfar 2024
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Generalization to multivariate regression

Theorem 8 (Multivariate regression)

letting ((V, ¢) = pyc(V, c)E(U?|V = V,C = c), we have
I (x,6%) — g*(x)[2 = O(n"2), xR

(the 2-norm over RY) whp over 6, where g* solves

min ; —A) D2 (g £ c ’ c

i [ e (RUE s o))V, ) dva
st. gxj))=y, j=1,...,M,

R{(=L)D/2(g — f(-,60))}(V,c) =0, (V,c) ¢ supp(¢).

Here R is the Radon transform, R{f}(w, b) = ‘]<w_x>:b f(x)ds(x), and
the power of the negative Laplacian (fA)(dH)/2 is the operator defined
in Fourier domain by (—A)(d+D/2£(£) = ||&]|7T2F(£).
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Generalization to other activation functions

Theorem 9 (Different activation functions)

Use the same setting as in Theorem 5 except that we use the
activation function ¢ instead of RelLU.

Suppose that ¢ is a Green's function of a linear operator L, i.e.
L¢ = 0, where 6 denotes the Dirac delta function.

Assume that the activation function ¢ is homogeneous of degree
k, i.e. p(ax) = ak¢(x) for all a > 0.

Then we can find a function p satisfying Lp = 0 and adjust
training data {(x;, y;)}}2; to {(xj,y; — P(x)} 1.

Montdfar 2024
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Generalization to other activation functions

Theorem 9 (Different activation functions)
After that, the statement in Theorem 5 holds with
1
min — _[L(g(x) — f(x,60))] dx
min [ S ILa() ~ (. 00)
s.t. g(XJ):yJ_p(XJ)v j:]-a"'va
where
C(x) = pe(x)EW3|C = x)
and S = supp(¢) N [min; x;, max; x;].
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Generalization

From Theorem 5 we can extract generalization results such as
® In the univariate noisless model for a target go on [a, b], if ¢
uniform, then
lg" — golloo < Cligd”lloch®
where g(4) is the fourth derivative of gg and h = max; xj+1 — Xx;.

® For univariate noisy models with y; = go(X;) + €;, €; independent
zero mean with variance o2, if x; uniform partition and ¢
uniform, using early stopping with t = ©(M*/5), then

Elg* — gl3 = O(M~*/®)

® Similar observations can be obtained in more general settings
such as non-uniform training inputs, non-constant ¢
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Related works

® Zhang et al. 2019 described the implicit bias of gradient descent
in the kernel regime as minimizing a kernel norm from
initialization, subject to fitting the training data.

® Savarese et al. 2019 showed infinite-width networks with 2-norm
weight regularization represent functions with smallest 1-norm of
the second derivative, an example of which are linear splines.

e Williams et al. 2019 showed a similar result for univariate shallow
ReLU nets training only the output layer from zero initialization.
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Summary

® Gradient descent training of overparametrized ReLU networks is
biased towards functions with low curvature.

® The parameter initialization procedure determines the curvature
penalty function 1/¢.

® Generalizations to multivariate ReLU networks, different
activation functions, and optimization trajectories.
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Further topics

Spectral bias

Implicit bias in mildly overparametrized nets

Other optimizers and stability
Role of the data
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