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Montúfar 2024 2/29



Intuition

Figure 1: Learned function (green) as training progresses1.

1Rahaman et al. 2019.Montúfar 2024 3/29



Spectral biases

• For shallow univariate ReLU networks the dominant
eigenfunctions of the Neural Tangent Kernel are smoother2

• ReLU nets in the kernel regime are biased towards smooth
interpolants3

• “Spectral Bias” can be interpreted to mean bias towards
learning the top eigenfunctions of the NTK

• By looking at empirical approximations to the eigenfunctions,
spectral bias was demonstrated to hold on the training set4

2Basri et al. 2019, 2020.

3Jin and Montúfar 2023; Williams et al. 2019.

4Arora et al. 2019a; Basri et al. 2020; Cao et al. 2021.Montúfar 2024 4/29



Overview

• We provide quantitative bounds measuring the L2 di↵erence in
function space between the trajectory of a

finite-width network trained
on finitely many samples

idealized kernel dynamics of
infinite width and infinite data

• As an implication, eigenfunctions of the NTK integral operator
(not just their empirical approximations) are learned at rates
corresponding to their eigenvalues

• The network inherits bias of the kernel at beginning of training
even when the width only grows linearly with the training sample
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NTK and convergence

• The NTK was introduced by Jacot, Gabriel, and Hongler 2018,
and Du et al. 2018 used it implicitly to prove global convergence
of GD in shallow ReLU network

• Since then, the NTK has been used to obtain global
convergence for arbitrary labels in a series of works5

• For global convergence for arbitrary labels, a usual requirement
is that the network width m is ⌦(poly(n)) or ⌦(1/✏)

• If the target function aligns with the NTK model, for shallow
nets this can be reduced to polylogarithmic (for the logistic loss)
or linear (for the squared loss)6

5Allen-Zhu, Li, and Song 2019; Du et al. 2019; Du et al. 2018; Nguyen 2021; Nguyen and Mondelli 2020;

Oymak and Soltanolkotabi 2020; Zou and Gu 2019; Zou et al. 2020.

6Bowman and Montúfar 2022a; E, Ma, and Wu 2020; Ji and Telgarsky 2020; Su and Yang 2019.Montúfar 2024 6/29



NTK spectrum and generalization

• The NTK tends to have skewed spectrum with a small number
of large outlier eigenvalues7

• The spectrum of the NTK integral operator for ReLU networks
has been shown to asymptotically follow a power law8

• Top eigenvectors of the NTK and low e↵ective rank have
appeared in generalization bounds and robustness9

7Arora et al. 2019a; Fan and Wang 2020; Karakida, Akaho, and Amari 2021; Li, Soltanolkotabi, and Oymak

2020; Murray et al. 2023; Oymak et al. 2020; Pennington and Bahri 2017; Pennington and Worah 2018; Yang and

Salman 2019.

8Velikanov and Yarotsky 2021.

9Arora et al. 2019a; Li, Soltanolkotabi, and Oymak 2020; Oymak et al. 2020.Montúfar 2024 7/29



NTK eigenvector and eigenfunction convergence

• For infinitely wide networks the projections of the residual along
eigenvectors of NTK decay linearly with rate of eigenvalues10

• We show a corresponding statement for the test residual instead
of the empirical residual:

Projections of the test residual along eigenfunctions of the NTK
integral operator are learned at rates given by the eigenvalues.

Moreover, the result holds for networks that do not need to be
under or extremely overparametrized and diverse architectures.

10Arora et al. 2019a; Basri et al. 2020; Cao et al. 2021; Luo et al. 2022.Montúfar 2024 8/29



Preliminaries

Montúfar 2024 9/29



Settings

• Neural network: f (x ; ✓) taking inputs x 2 X ⇢ Rd ,
parameterized by ✓ 2 Rp.

• Training data: {(x1, y1), . . . , (xn, yn)} ⇢ Rd ⇥ R, yi = f ⇤(xi ).

• Residual error on training set: r̂(✓) 2 Rn, r̂(✓)i := f (xi ; ✓)� yi .

• Squared error loss:

�(✓) := 1
2n kr̂(✓)k

2
2 =

1
2 kr̂(✓)k

2
Rn

• Gradient flow:
@t✓t = �@✓�(✓)

h•, •i and k•k2 Euclidean inner product and norm. h•, •iRn = 1
n
h•, •i and k•kRn :=

p
h•, •iRn . Let

L
p(X , ⌫) denote the L

p space over domain X with measure ⌫.Montúfar 2024 10/29



NTK definitions

• Analytical NTK:

K1(x , x 0) := E✓0⇠µ

⇥
hr✓f (x ; ✓0),r✓f (x

0; ✓0)i
⇤
,

with expectation taken over the parameter initialization ✓0 ⇠ µ.

• Integral operator: The kernel K1 induces

TK1 : L2(X , ⇢) ! L2(X , ⇢); g(x) 7!
Z

X

K1(x , s)g(s)d⇢(s),

(1)
where X is our input space and ⇢ is the input distribution.

• Spectral decomposition: By Mercer’s theorem we have

K1(x , x 0) =
1X

i=1

�i�i (x)�i (x
0),

where {�i} is an orthonormal basis for L2(X , ⇢) and {�i} is a
nonincreasing sequence of positive values.
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Finite data and finite width

• Discretization: Training sample x1, . . . , xn introduces

Tn : g(x) 7! 1

n

nX

i=1

K1(x , xi )g(xi ) =

Z

X

K1(x , s)g(s)db⇢(s),

(2)
where b⇢ = 1

n

P
n

i=1 �xi is the empirical measure.

• Time dependent NTK:

Kt(x , x
0) := hr✓f (x ; ✓t),r✓f (x

0; ✓t)i

has an associated time-dependent operator T t
n

T t

ng(x) :=
1

n

nX

i=1

Kt(x , xi )g(xi ) =

Z

X

Kt(x , s)g(s)db⇢(s). (3)

• Update rule: under gradient flow the residual is given by

@trt(x) = �1

n

nX

i=1

Kt(x , xi )rt(xi ) = �T t

n rt .
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Idealized infinite width and infinite data

• Infinite width limit: Speaking loosely, as the network width tends
to infinity the time-dependent NTK becomes constant so that

Kt(x , x
0) = K1(x , x 0) and T t

n = Tn

• Infinite data limit: Similarly, heuristically as n ! 1 we have

Tn ! TK1

• In this idealized setting the update rule is @trt = �TK1rt ,
which has the solution rt = exp(�TK1t)r0 defined via

hrt ,�i i⇢ = exp(��i t)hr0,�i i⇢. (4)

• Thus in this idealized setting the network learns eigenfunctions
�i at rates determined by their eigenvalues �i .
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Spectrum is skewed

• The dependence of the convergence rate on �i is particularly
relevant as the NTK tends to have a very skewed spectrum

Index of eigenvalue
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LeNet-5 CNN NTK on MNIST
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Shallow FC softplus NTK on CIFAR10

Figure 2: Normalized NTK spectrum �k/�1 on MNIST and CIFAR10 for
two networks using 10 random parameter initializations and data batches.
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Spectral bias outside the training set

Montúfar 2024 15/29



• We will see that the bias at the beginning of training can be
described entirely through TK1 and its eigenfunctions.

• This depends only on the model architecture, parameter
initialization distribution µ, and input distribution ⇢.

Montúfar 2024 16/29



Architectures

• We consider deep networks of the form:

↵(0) := x ,

↵(l) :=  l(✓
(l),↵(l�1)), l 2 [L],

f (x ; ✓) :=
1

p
mL

vT↵(L),

• We assume each layer  l has one of the following forms:

Fully Connected :  l(✓
(l),↵(l�1)) = !

✓
1

p
ml�1

W (l)↵(l�1)

◆

Convolutional :  l(✓
(l),↵(l�1)) = !

✓
1

p
ml�1

W (l) ⇤ ↵(l�1)

◆

Residual :  l(✓
(l),↵(l�1)) = !

✓
1

p
ml�1

W (l)↵(l�1)

◆
+ ↵(l�1)

• We assume maxml/m = O(1), m = minl ml , and treat input
dimension d := m0, depth L, and filter sizes K as constant.

Montúfar 2024 17/29



Initialization

• Use antisymmetric initialization11 with ✓0 ⇠ N(0, I )

• This simultaneously ensures that the model is identically zero at
initialization without changing the NTK at initialization

11Zhang et al. 2020.Montúfar 2024 18/29



Assumptions

Assumption 1

1. Twice continuously di↵erentiable activation !, Lipschitz !,!0

(satisfied by most activations except ReLU )

2. Compact input domain X with strictly positive Borel measure ⇢
(su�cient condition for Mercer’s theorem)

3. Target function f ⇤ satisfies kf ⇤k
L1(X ,⇢) = O(1)

(the target function is bounded)

4. Antisymmetric initilization so that f (•; ✓0) ⌘ 0
(probably not strictly necessary)

Montúfar 2024 19/29



Theorem 1

• Let K (x , x 0) fixed continuous, symmetric, positive definite kernel

• Let Pk : L2(X , ⇢) ! L2(X , ⇢) denote the orthogonal projection
onto the span of the top k eigenfcts of the operator TK

• Let �k > 0 denote the k-th eigenvalue of TK

Then m = ⌦̃(T 4/✏2) and n = ⌦̃(T 2/✏2) su�ces to ensure with
probability 1� O(mn) exp(�⌦(log2m) over the parameter
initilization and the training samples that for all t  T and k 2 N

kPk(rt � exp(�TK t)r0)k2L2(X ,⇢)



1� exp(��kt)

�k

�2
·
h
4 kf ⇤k21 kK � K0k2L2(X 2,⇢⌦⇢) + ✏

i

and

krt � exp(�TK t)r0k2L2(X ,⇢)  t2·
h
4 kf ⇤k21 kK � K0k2L2(X 2,⇢⌦⇢) + ✏

i
.

Montúfar 2024 20/29



Interpretation

• Theorem 1 compares the dynamics of

rt(x) := f (x ; ✓t)� f ⇤(x) exp(�TK t)r0
finite-width model trained on

finitely many samples
idealized kernel method with

infinite data

•
exp(�TK t)r0 learns projection along �i linearly at rate �i , by (4),

hrt ,�i i⇢ = exp(��i t)hr0,�i i⇢.

Whenever the NTK at initialization K0 concentrates around K ,
the residual rt will inherit this bias of the kernel dynamics.

• Furthermore, the bound for the projected di↵erences is smaller
when �k is larger. Therefore the bias appears more pronounced
along eigendirections with large eigenvalues.
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Consequences for the special case K = K1

In infinite width limit, K0 approaches K1 for general architectures12

The typical rate is |K0(x , x 0)�K1(x , x 0)| = Õ(1/
p
m) whp1314, so

Assumption 2

m = ⌦̃(✏�2) su�ces to ensure that kK0 � K1k2
L2(X⇥X ,⇢⌦⇢)  ✏

holds whp 1� �(m) over the initialization ✓0, where �(m) = o(1).

12Yang 2020.

13Du et al. 2019; Du et al. 2018; Huang and Yau 2020, for fixed x, x0.

14Bowman and Montúfar 2022a; Buchanan, Gilboa, and Wright 2021, uniformly over x, x0.Montúfar 2024 22/29



Consequences for the special case K = K1

Corollary 2

Under Assumption 2, setting K = K1, we have m = ⌦̃(T 4/✏2)
and n = ⌦̃(T 2/✏2) su�ces to ensure with probability
1� O(mn) exp(�⌦(log2m)� �(m) that for all t  T and k 2 N

kPk(rt � exp(�TK1t)r0)k2L2(X ,⇢) 

1� exp(��kt)

�k

�2
· ✏

and
krt � exp(�TK1t)r0k2L2(X ,⇢)  t2 · ✏.

Montúfar 2024 23/29



Consequences for the special case K = K1

• Corollary 2 states that up to time T , rt ⇡ exp(�TK1t)r0
• Given that K1 tends to have a highly skewed spectrum, the

magnitude of �i is particularly relevant on the convergence rate

• The bound on projected di↵erence is smaller when �k is large.
Thus bias along top eigenfunctions is particularly pronounced

Observation 3

At the beginning of training the network learns projections along
eigenfunctions of NTK integral operator TK1 at rates given by the
eigenvalues; particularly so for eigenfcts with large eigenvalues.

Montúfar 2024 24/29



Scaling wrt width and number of training samples

• As long as n  m↵ for some ↵ > 0 the failure probability
O(mn) exp(�⌦(log2m)) goes to zero as m ! 1.

Thus once m and n are su�ciently large relative to T and ✏, they
can tend to infinity at any rate to achieve a high prob bound.

• m and n both have the same scaling ⌦̃(✏�2) with respect to ✏

Thus for fixed T we can send m, n to infinity at rate m ⇠ n to
get error ✏! 0. This is significant as typical NTK analysis
requires m = ⌦(poly(n)).

Observation 4

The network inherits the bias of the kernel at the beginning of
training even when width m only grows linearly with the sample n.

Montúfar 2024 25/29



Scaling with respect to stopping time

As t � log(
kf ⇤k

L1(X ,⇢)

✏ ) 1
�k

su�ces for kPk exp(�TK1t)r0kL2(X ,⇢)  ✏,

Corollary 5

Under Assumption 2, T = ⌦̃(1/�k) and ✏ > 0, we have that
m = ⌦̃(�k�8/✏2) and n = ⌦̃(��6

k
/✏2) su�ces to ensure that with

probability at least 1� O(mn) exp(�⌦(log2(m))� �(m)

kPk rTk2L2(X ,⇢)  ✏

and in particular

1

2
krTk2L2(X ,⇢)  Õ(✏) + k(I � Pk)r0k2L2(X ,⇢) .
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Scaling with respect to stopping time

• Corollary 5 says T = ⌦̃(1/�k) is long enough to ensure that the
network has learned the top k eigenfunctions to ✏ accuracy
provided that m = ⌦̃(��8

k
✏�2) and n = ⌦̃(��6

k
✏�2).

• We also have a bound on the test error 1
2 krtk

2
L2(X ,⇢).

From ASI, k(I � Pk)r0k2L2(X ,⇢) = k(I � Pk)f ⇤k2L2(X ,⇢).
For general f ⇤, this can decay arbitrary slowly wrt k .

To get a learning guarantee:

• When f ⇤ is in the RKHS of K1, one can15 choose T ⇠ ✏�1

to bring the test error to ✏ provided m, n = ⌦̃(poly(✏�1)).

• One can identify cases where a power law holds16. Then choose
T ⇠ ✏�1/⇠ to get a guarantee provided m, n = ⌦̃(poly(✏�1)).

15One can show kexp(�TK1 t)r0k2
L2(X,⇢)

= O(
kf ⇤k2

H

t
)

16Velikanov and Yarotsky 2021, kexp(�TK1 t)r0k2
L2(X,⇢)

⇠ Ct
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Comparison to other works

• Linearization: There are results17 which compare f (x ; ✓) to its
linearization flin(x ; ✓) := hr✓f (x ; ✓0), ✓ � ✓0i+ f (x ; ✓0) in the
regime m = ⌦(poly(n)), in which case the loss converges to zero
and the parameter changes k✓t � ✓0k2 are bounded.

By contrast we avoid m = ⌦(poly(n)) by using a stopping time.

17Arora et al. 2019b; Jin and Montúfar 2023; Lee et al. 2019.Montúfar 2024 28/29



Comparison to other works

• Spectral bias on empirical: There are results17 similar to Th 1
and Cor 2 but which roughly replace TK1 with Gram matrix on
training data (G1)i ,j = K1(xi , xj) and ⇢ with ⇢̂ = 1

n

P
n

i=1 �xi .

Arora et al. 2019a; Basri et al. 2020 operate in the regime
m = ⌦(poly(n)) and as a benefit do not need a stopping time.

Cao et al. 2021 instead requires m = ⌦(max{��14
k

, ✏�6}) where
�k is the cuto↵ eigenvalue.

17Arora et al. 2019a; Basri et al. 2020; Cao et al. 2021.Montúfar 2024 28/29



Comparison to other works

• Underparameterized Bowman and Montúfar 2022a obtained a
version of Cor 2 for an underparameterized shallow net. They
require m = ⌦̃(✏�1T 2) and n = ⌦̃(✏�1pT 2) and thus n � p.

We removed the dependence of n on p and demonstrated the
result for general deep architectures at the expense of slightly
worse scaling with respect to T and ✏.
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Summary

• Quantitative bounds on the L2 di↵erence in function space
between a finite-width network trained on finite samples and the
corresponding kernel method with infinite width and data.

• The network inherits the bias of the kernel at the beginning of
training even when the width scales linearly with the sample size.

• Bias is not only over training data but over entire input space.

Interesting future work:

• Investigate if flat minima manifesting a low-e↵ective-rank FIM
after training can be related to the behavior of the network on
out-of-sample data after training.
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