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Overview

® Power series expansion for the Neural Tangent Kernel of
arbitrarily deep feedforward networks in the infinite width limit.

® Express coefficients of the power series depending on Hermite
coefficients of activation function and depth of the network.
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Overview

® Power series expansion for the Neural Tangent Kernel of
arbitrarily deep feedforward networks in the infinite width limit.

® Express coefficients of the power series depending on Hermite
coefficients of activation function and depth of the network.

Faster decay of Faster decay of

Hermite coefficients NTK coefficients

Effective rank of - Effective rank of
NTK Data Gram

e Data uniform on sphere: NTK eigenvalues; impact of activation.

® Generic data: asymptotic upper bound on the NTK spectrum.
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@ Origins of the NTK
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® |oss landscape of neural networks is high-dimensional,
non-convex, non-smooth, ...

1Neyshabur, Tomioka, and Srebro 2015.
2| ee et al. 2018; Neal 1996.
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Loss landscape of neural networks is high-dimensional,
non-convex, non-smooth, ...

Overparametrized networks work well empirically both in the
sense of parameter optimization and statistical generalization.
Some form of capacity control other than nr of parameters?.

Infinitely wide networks correspond to Gaussian processes?.

Training behavior can also be described by a kernel, the NTK3.

In the infinite-width limit, the NTK becomes deterministic at
initialization and stays constant during training.
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Loss landscape of neural networks is high-dimensional,
non-convex, non-smooth, ...

Overparametrized networks work well empirically both in the
sense of parameter optimization and statistical generalization.

Some form of capacity control other than nr of parameters?.

Infinitely wide networks correspond to Gaussian processes?.

Training behavior can also be described by a kernel, the NTK3.
In the infinite-width limit, the NTK becomes deterministic at
initialization and stays constant during training.

The NTK is a tool that allows one to abstract away complexities
of the parameter space.

1Neyshabur, Tomioka, and Srebro 2015.
2| ee et al. 2018; Neal 1996.

far 20234Jacot, Gabriel, and Hongler 2018.
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Linear regression

e Data, model, loss:

{(xiayl')}) XIGRd,}/iER

f(x;0) =0"x
L(0) = 5 D2(F(xi:0) — )
i=1
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Linear regression

e Data, model, loss:

{(xiayl')}) XieRd,)/ieR

f(x;0) =0"x

® Gradient descent:
0t+1 :9t - othL(Ht)
=0 — ar > _(F(xi;0) — yi) VF(x;;0)
——r

Xj
indep. of 6;

For sufficiently small a;, convergence to global optimum.
Montdfar 2024



Kernel methods

Linear functions of x are too restrictive, consider instead

xeR!Y — qS(x)eRD, d< D

Example:
X1
X2
X1 Xx;;(
- e 1X2
x= 2] — o0 =|uk
Model, loss:

f(x;0) =07 ¢(x) is still linear in 6
%Z(f(xi; 0) — yi)? is still convex in 6
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Kernel trick:
® In many cases we only need inner products (¢(x), ¢(x’))

® These may be expressible in terms of a kernel function

K(x,x') = (¢(x), ¢(x'))

that can be computed without explicit computation of ¢(x)

® For example, polynomial kernel
K(xx) = (c + xTx¥) = 6(x)To(x),

feature vector ¢(x) consists of monomials of degree < k, but

product is computed in d rather than D = (dtk)

Montdfar 2024



e Simple example:

1 m
f(x;0) = —= ) vio({w;,x))
Vi 2
L0) = 5 D (Flxi ) — )

® Gradient descent:

n

Neural networks

m

0 = (Wj, Vj)J:l

Ocr1 =0 —ar Yy (F(xi:0:) — i) VF(xi; ;)
N

i=1

not indep. of 6;

® |n some cases we observe “lazy training”, whereby parameters

remain nearly constant in t.
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® So, consider 1st order Taylor expansion around 6y:
f(x;0) ~ f(x; 00) + VF(x;00) " (6 — o)

This is not linear in x but is linear in 6.
e Similar to a kernel method with feature map ¢(x) = V£(x; 6p).

® The corresponding kernel takes the form

K(x,x') = (Vf(x;60), VI(x'; 6p))

Montdfar 2024 10/43



® For our example f(x;0) = ﬁ >oiL1 vio((wj, x)), the feature
map takes the form:

Vi 030) = <=y (g )

m

(%)

Y, f(x;0) = NG

® The kernel takes the form:

K(x,x') =K, (x,x) + Ky (x, x)

SR

K, x') =— 3 020" (g, 3))o (g, ) (x, )

1

a({wj, x))o({w;, X))
1

J

3

1
K, (x,x") =—
m ¢

This may be regarded as a sample mean!
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® Then for an infinitely wide network, by law of large numbers,
convergence to the expectation:

Ko (x,x') 2222 E[v2o’ ({w, x))o’ ({(w, x))(x, x')]

Ko(x,x') == Elo((w,x))o((w, )]

® For example if 0 ReLU and w; ~ rotation invariant distribution:

Ko (%, %) :%@(, XVE[V?](r — )

Ky (x,x') =1 ”‘!’E”W’ ]((ﬂ — 9) cos(d) + sin(¥9))

Here ¥ is the angle between x and x’
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Gradient dynamics

Consider the gradient flow:

40, = —VL(0;)

Squared error loss:

L) =3l —yII*>. 9.y €R"
VL(O) =Vy(y—y)

® Dynamics of the parameters:

%Ht = —V)A’()A’_Y)
® Dynamics of the predictions y:
dy dydo AT d
— =——= Vy'44
dt ~ df dt Y
=-VyTvy(y—y)
——
K
Montufar 2024 13/43



e |f K is approximately constant, then for the residual r =y — y:

® If K is positive definite, Kg, > 0, then linear convergence to 0
with rate determined by the least eigenvalue.

® Moreover, spectrum and eigenfunctions,
n
Koo =D €&, An >+ > M >0,
i=1

give convergence of r along different components.
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e |f K is approximately constant, then for the residual r =y — y:
gl ==Ky - r
re =rp e Koot
® If K is positive definite, Kg, > 0, then linear convergence to 0

with rate determined by the least eigenvalue.

® Moreover, spectrum and eigenfunctions,
n
Koo =D €&, An >+ > M >0,
i=1

give convergence of r along different components.

Thus, interest in stability, least eigenvalue and spectrum!
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Parameters vs functions

Gradient descent for 6 — fy — £(fy) = L(6)
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Parameters vs functions

Gradient descent for 0 — fy — ((fy) = L(0)

® Parameter 20 = —VyL = —JTV((f)  (Jacobian J = VyfT)
® Prediction &f = —J20 =—JJTVl(f)

* Loss L1 = —Vel(f)TJITV ()
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Parameters vs functions

Gradient descent for 0 — fy — ((fy) = L(0)

® Parameter 20 = —VyL = —JTV((f)  (Jacobian J = VyfT)
® Prediction &f = —J20 =—JJTVl(f)

* Loss L1 = —Vel(f)TJITV ()

In turn, for Vel(f)=f —y =rand JJT =3, N&&T
® If \; > ¢, eventually r =0

® The ith component of r drops at rate \;
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@ Settings
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Neural network

® Fully-connected network with L hidden layers and linear output.
* For a given input x € RY,

preactivation activation
gW(x) = v Whx + b, FO(x) = ¢ (eM(x)),
gV(x) = 2 WO (x) + opbl), FO(x) = ¢ (g (x)) ,
gH(x) = jLW(L‘H)f(L)( x), FLHD(x) = g(t+1)(x).

(1)

® Weight matrices W() ¢ Rmxmi-1  hias vectors b(!) € R™,
parameters up to /th layer §; = (W), b(h))ﬂ,:1 € RP.

e Activation function ¢: R — R applied elementwise.

® Hyperparameters v, 04 € R>o, Vb, 0p € R>o.

Montdfar 2024
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Assumption 1

1. At initialization all network parameters are iid N(0, 1).
2. Activation fct ¢ € L2(R,~) differentiable a.e., ¢' € L?(R, 7).
3. Widths sent to infinity in sequence, m; — oo,..., my — 0.

* We denote by L?(R,~) the space of functions ¢: R — R with

Ex-0.1)[¢(X)?] < o0.

® |tem 2 is satisfied for ReLU, Tanh, Softplus,...

Montdfar 2024
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Neural Tangent Kernel

e The NTK of f() at layer / € [L + 1] is ©(): RY x RY — R,

é(l)(xa y) = <v9/ f(l) (X), v@/f(l) (y)> (2)

4Jacot, Gabriel, and Hongler 2018.
Montdfar 20254Ar0ra et al. 2019; Lee et al. 2019; Woodworth et al. 2020. 19/43



Neural Tangent Kernel

The NTK of f() at layer / € [L+ 1] is ©(): R? x RY — R,

é(l)(x,y) = <v9/ f(l)(x)a v@/ f(l)(y)> (2)

Under Assumption 1, for any / € [L + 1],

- @) converges in probability to a deterministic ©()%.

Network behaves like kernelized linear predictor during training®.

4Jacot, Gabriel, and Hongler 2018.
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Neural Tangent Kernel

e The NTK of f() at layer / € [L + 1] is ©(): RY x RY — R,

é(l)(x,y) = <v9/ f(l)(x)a v@/ f(l)(y)> (2)

® Under Assumption 1, for any / € [L + 1],

- @) converges in probability to a deterministic ©()%.

- Network behaves like kernelized linear predictor during training®.

® The (infinite width limit) NTK matrix at layer | € [L + 1] for
data X = [x1,...,x,]" € R™9 is

K] = %e(O(x,,xj), W(i.j) € [n]  [n]. (3)

4Jacot, Gabriel, and Hongler 2018.

Montufar 20254Arora et al. 2019; Lee et al. 2019; Woodworth et al. 2020. 10/43



Settings

Assumption 2
1. The hyperparameters of the network satisfy
Yotvs =1, UEVEZNN(O,I)[¢(Z)2] <1, 05= 1_0-5V]EZNN(O,1)[¢(Z)2]'

2. The data is normalized so that ||x;|| =1 for all i € [n].

® This ensures the preactivation of each neuron has unit variance,
reminiscent of init to avoid vanishing/exploding gradients.

® Under Assumption 2 we write the NTK as an analytic power
series on [—1, 1] and derive expressions for the coefficients.

Montdfar 2024 20/43



© Expressing the NTK as a power series
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Hermite expansion

® The normalized probabilist's Hermite polynomials are defined as

(_1)keX2/2 d* —x2/2
VR axk®

These form a complete orthonormal basis in L?(RR,~)°®.

hk(X): k:O,l,...

* The Hermite expansion of a function ¢ € L(R,~) is given by

$(x) =D () (),
k=0

with Hermite coefficients

1k (#) = Exnr(0,1)[0(X) he(X)].

Montdfar 2026p'Donnell 2014.



Notations

Denote the Hadamard (entrywise) product by X ® Y and

XGP:X@X@...@X_

Given a Hermitian or symmetric matrix X € R"*", we adopt the
convention that A;(X) denotes the ith largest eigenvalue,

AL(X) = Aa(X) = - > An(X).

* For a square matrix we let Tr(X) = >_7_;[X];; denote the trace.
XX is the Gram matrix of the input data.
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Theorem 1
Under Assumptions 1 and 2, for all | € [L + 1]

K, = g%mm (xxT) o (4)

The series for each entry n[K];; converges absolutely.

The kp, are nonnegative and are expressed by following recurrence
relation depending on the Hermite coefficients pp(¢) and pp(¢').
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The coefficients of the power series (4) are given by

Kp | = 5p:07t2; + 6P:175V7 I = 17 (5)
P Qp |+ ZZ:O Kq,1—1Vp—q,I; | e [2, L+ ].],

where

J = 00 _

P Zkzo Oék,2F(P7 kva/—l)) / 2 35
and
2,2 _
, ZZOZO’U/(,QF(,D, kval—l)v / > 3>

are likewise nonnegative for all p € Z>g and | € [2, L + 1], where

Montdfar 2024
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for a sequence of reals 3 = (a;)7°, and any p, k € Z>o,

® set of k-tuples of nonnegative integers which sum to p
k
I (p, k) = {Ui)ie: Ji = 0 Vi € [K], ZJ}' =p}, Vp € Zso,keN
i=1
® sum of ordered products of k-tuples of @ whose indices sum to p
1, k=0and p=0,

F(p, k,a) = {0, k=0and p>1, (8)
z(ji)ej(P,k) Hf-(:]- ajl-, k Z 1 and P 2 0.

Montdfar 2024 26/43



Assumption 3

The activation fct ¢: R — R is absolutely continuous,
differentiable a.e., poly bounded, |#(x)| = O(|x|?).

® This is satisfied by ReLU, Tanh, Sigmoid, Softplus and has
minimal impact on the generality of our results.

® Under Assumption 3, vp2 = (p + 1)apt1,2 and thus to compute
Kp, we do not need the Hermite coefficients of ¢'.

Montdfar 2024



Activation and NTK coefficients

To better understand the relationship between
Hermite coefficients and NTK coefficients

consider first the simple two-layer case, i.e., with L =1,

Kp2 = 0o (L + 72 P)HA(8) + oo (1 + p)uii1(6) + 6p—00.

Montiifar 2024
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Table 1: Percentage of -7 #p» accounted for by the first T +1 NTK
coefficients assuming 72, = 1, 72 =0, 02, = 1 and 02 = 1 — E[$(Z)?].

First few NTK coefficients

T = 0 1 2 3 4 5

RelLU 43.944 77.277 93.192 93.192 95.403 95.403
Tanh 41.362 91.468 91.468 97.487 97.487 99.090
Sigmoid 91.557 99.729 99.729 99.977 99.977 99.997
Gaussian 95.834 95.834 98.729 98.729 99.634 99.634

e Across activation functions, the first few coefficients account for
the large majority of the total NTK coefficient series.

Montdfar 2024
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Asymptotic rate of decay of NTK coefficients

Lemma 2
Under Assumptions 1 and 2,

1. if ¢(z) = ReLU(z), then kpo = 5(%>0)U(p even)@(p_3/2),
2. if §(z) = Tanh(z), then kpr = O (exp <_7TT\/Iﬁ>>

z)
3. if §(z) = wo(2), then Kp2 = 5(%>0)U(p even)e(pl/z(o-2 +1)7P).
Here ws(z) = (1/V2m02) exp (—2%/(20?))

® The asymptotic rate of decay of the NTK coefficients varies
significantly by activation function.

Montiifar 2024 30/43



NTK approximation by truncated series

e Currently computing ©() requires either explicit evaluation of
Gaussian integrals, or approximation, or wide networks.
® \We may also use a truncated power series.

Error of truncated NTK

18(0) - ©+(p)|

iy

025 050 075 100

Figure 1: Absolute error between the analytical ReLU NTK and its

truncated power series, where p = xTy, truncation point T, and depth L.
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O Spectrum of the NTK via its power series
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Effective rank
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Effective rank of the NTK

* For convenience drop subscr / and let nK = 27 ; ¢, (XXT)®P.
® We study the effective rank of the kernel K, which is defined as

eff(K) = Zgg
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Effective rank of the NTK

* For convenience drop subscr / and let nK = 27 ; ¢, (XXT)®P.
® We study the effective rank of the kernel K, which is defined as

eff(K) = Zgg

Theorem 3
For general activations (110(¢) # 0) or nonzero bias networks,
co # 0, the effective rank is O(1) as

Tr(K) < 2 it Ci
)\1(K) - (o)) '

For ReLU in Table 1, approx 2.3.
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Effective rank of the NTK

* For convenience drop subscr / and let nK = 27 ; ¢, (XXT)®P.
® We study the effective rank of the kernel K, which is defined as

eff(K) = Zgg

Theorem 3
For general activations (110(¢) # 0) or nonzero bias networks,
co # 0, the effective rank is O(1) as

Tr(K) < 2 it Ci
)\1(K) - (o)) '

For ReLU in Table 1, approx 2.3.

Corollary 4

The largest eigenvalue A\1(K) takes up Q(1) fraction of the trace
and there are O(1) eigenvalues on the order of \1(K).

Here O and Q is wrt n. By contrast, well-conditioned matrix has rank Q(n).
Montiifar 2024 34/43



Effective rank of the NTK

® To understand the rest of the spectrum, we analyze the centered
kernel K := K — ¢cgl,%n.

Theorem 5 y
The effective rank of the centered kernel K is upper bounded by
the effective rank of the data Gram XXT

D o1 Cp

eff(K) < eff(XXT) .
1

For ReLU in Table 1, approx 1.7.

Montiifar 2024 35/43



Effective rank of the NTK

® To understand the rest of the spectrum, we analyze the centered
kernel K := K — ¢cgl,%n.

Theorem 5 y
The effective rank of the centered kernel K is upper bounded by
the effective rank of the data Gram XXT

0

~ _1C

eff (K) < eff(xxT)@.
o]

For ReLU in Table 1, approx 1.7.

Corollary 6

Whenever the input data matrix XX T is approx low rank, K is also
approx low rank. Since real-world data tends to be low-rank, the
NTK also tends to be low-rank!
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Effective rank of the NTK

® To understand the rest of the spectrum, we analyze the centered
kernel K := K — ¢cgl,%n.

Theorem 5 y
The effective rank of the centered kernel K is upper bounded by
the effective rank of the data Gram XXT

0

~ _1C

eff (K) < eff(xxT)@.
o]

For ReLU in Table 1, approx 1.7.

Corollary 6

Whenever the input data matrix XX T is approx low rank, K is also
approx low rank. Since real-world data tends to be low-rank, the
NTK also tends to be low-rank!

Theorem 7
Also holds for finite-width shallow RelLU networks.
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NTK spectrum mimics input data spectrum

NTK Spectrum: Caltech101, Depth=2 NTK Spectrum: Gaussian Data, Depth=2

Activation
— rlu
~— fanh

~— lnear
~——— data

NTK Spectrum: Caltech101, Depth=5 NTK Spectrum: Gaussian Data, Depth=5
10° r
~
10
10”
0 2 0 & & 100 [ 2 © & & 100
Eigenvalue Index Eigenvalue Index

Figure 2: Ap/A1 of NTK matrix K and data Gram XXT.
Width 500, Kaiming uniform init, n = 200, mean across 10 trials and 95%
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Asymptotic decay
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Asymptotic decay of the spectrum

® For a dot product kernel with data uniform on a sphere, the
7

eigenfunctions are the spherical harmonics’.
® For a kernel function of the form K(x,y) = > 2 cp(x,y),

Azevedo and Menegatto 2015 gave the eigenvals in terms of cp.
® Given a specific decay rate for the coefficients c, one may derive

the decay rate of \.

Montdfar 202743a5ri et al. 2019; Bietti and Mairal 2019. 38/43



Asymptotic decay of the spectrum

For the uniform distribution on the sphere S?, the decay of the
power series coefficients determines the decay of the spectrum.

® Let A, be the eigenvalue for frequency-k spherical harmonic.
® (ReLU) if ¢, = ©(p~?) with a > 1, then
Tk — e(kfdf2a+2)’

* (Tanh) if ¢, = O (exp (—ay/p)), then
A =0 (k_d+1/2 exp <—a\/E)> ,
* (Gaussian) if ¢, = ©(p'/2a=P), then
Fo= 0 (k) g = (k- 2H )

Recovers RelLU Basri et al. 2019; Bietti and Bach 2021; Geifman et al. 2020;

I4ikanov and Yarotsky 2021, gives rates for shallow Tanh and Gaussian

V.
Montiifar 20% 39/43



NTK Spectrum: ReLU NTK Spectrum: Tanh NTK Spectrum: Gaussian

- \ 107
o 0 ! —— 0.0375¢-14891 0 0]\ 0.0002 x £79751.307* ° \ —— 12.31x£7%%9.467"
E ReLU 3 . Tanh 3 10°7 " Gaussian
S 102 S 10- [
-1
c c £ 10
[ @ 1072 [
o = 2016
i 10 —~— i jp-16 i 10
0 500 1000 1500 0 200 400 600 800 0 100 200 300 400
Eigenvalue Index ¢ Eigenvalue Index ¢ Eigenvalue Index ¢

Figure 3: NTK spectrum of two-layer fully connected networks with
ReLU, Tanh and Gaussian activations under the NTK parameterization.
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Asymptotic decay of the spectrum

Results similar in spirit, albeit weaker, hold for any data on sd.

® Let r(n) denote the rank of the data matrix.

® If ¢, = O(p~?) with a > r(n) + 1, then
An=0 (n_i(ﬁ) ,

® if ¢, = O(e~VP), then, for any a’ < a2~ 1/2r(n)

A =0 (nﬁ exp <—a’nﬁ)) ;
* if ¢, = O(e™?P) then, for any a’ < a2~ 1/2r(n),
Ap=0 (exp (—a’n%"))) )

Montiifar 2024 41/43



Conclusions

A simple power series analysis can be used to characterize both
outlier eigenvalues and asymptotic decay of the NTK spectrum.

® The NTK has a large outlier eigenvalue and O(1) eigenvalues on
the same order of magnitude as the largest eigenvalue.

® |f the input data matrix is low rank, the NTK is also low rank.

® The asymptotic decay of the power series coefficients determines
the asymptotic decay of the spectrum.

® The decay of these coefficients are in turn driven by the Hermite
coefficients of the activation function and the network depth.
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Further reading

A brief intro to the NTK (Ben Bowman)

e Implicit bias of gradient descent for MSE with wide shallow
ReLU nets (with Hui Jin)

® Spectral bias outside the training set for deep nets in the kernel
regime (with Ben Bowman)

e Math Machine Learning seminar MPl MiS + UCLA
https://www.mis.mpg.de/events/series/math-machine-1
earning-seminar-mpi-mis-ucla
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https://www.benjamin-bowman.com/assets/Intro_to_NTK.pdf
https://www.jmlr.org/papers/v24/21-0832.html
https://www.jmlr.org/papers/v24/21-0832.html
https://openreview.net/forum?id=a01PL2gb7W5
https://openreview.net/forum?id=a01PL2gb7W5
https://www.mis.mpg.de/events/series/math-machine-learning-seminar-mpi-mis-ucla
https://www.mis.mpg.de/events/series/math-machine-learning-seminar-mpi-mis-ucla
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