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Overview

• Power series expansion for the Neural Tangent Kernel of
arbitrarily deep feedforward networks in the infinite width limit.

• Express coe�cients of the power series depending on Hermite
coe�cients of activation function and depth of the network.

Faster decay of
Hermite coe�cients

)
Faster decay of
NTK coe�cients

E↵ective rank of
NTK

,
E↵ective rank of
Data Gram

• Data uniform on sphere: NTK eigenvalues; impact of activation.

• Generic data: asymptotic upper bound on the NTK spectrum.
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• Loss landscape of neural networks is high-dimensional,
non-convex, non-smooth, . . .

• Overparametrized networks work well empirically both in the
sense of parameter optimization and statistical generalization.

• Some form of capacity control other than nr of parameters1.

• Infinitely wide networks correspond to Gaussian processes2.

• Training behavior can also be described by a kernel, the NTK3.
In the infinite-width limit, the NTK becomes deterministic at
initialization and stays constant during training.

• The NTK is a tool that allows one to abstract away complexities
of the parameter space.

1Neyshabur, Tomioka, and Srebro 2015.

2Lee et al. 2018; Neal 1996.

3Jacot, Gabriel, and Hongler 2018.Montúfar 2024 5/43
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• Loss landscape of neural networks is high-dimensional,
non-convex, non-smooth, . . .

• Overparametrized networks work well empirically both in the
sense of parameter optimization and statistical generalization.

• Some form of capacity control other than nr of parameters1.

• Infinitely wide networks correspond to Gaussian processes2.

• Training behavior can also be described by a kernel, the NTK3.
In the infinite-width limit, the NTK becomes deterministic at
initialization and stays constant during training.

• The NTK is a tool that allows one to abstract away complexities
of the parameter space.

1Neyshabur, Tomioka, and Srebro 2015.

2Lee et al. 2018; Neal 1996.

3Jacot, Gabriel, and Hongler 2018.Montúfar 2024 5/43



Linear regression

• Data, model, loss:

{(xi , yi )}, xi 2 Rd , yi 2 R

f (x; ✓) = ✓>x

L(✓) =
1

2

nX

i=1

(f (xi ; ✓)� yi )
2

• Gradient descent:

✓t+1 =✓t � ↵trL(✓t)

=✓t � ↵t

X
(f (xi ; ✓)� yi ) rf (xi ; ✓t)| {z }

xi

indep. of ✓t

For su�ciently small ↵t , convergence to global optimum.
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Kernel methods

Linear functions of x are too restrictive, consider instead

x 2 Rd
�! �(x) 2 RD , d ⌧ D

Example:

x =
h x1
x2
x3

i
�! �(x) =

2

64

x1
x2
x3
x1x2
x1x3
...

3

75

Model, loss:

f (x; ✓) = ✓T�(x) is still linear in ✓

1
2

nX

i=1

(f (xi ; ✓)� yi )
2 is still convex in ✓
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Kernel trick:

• In many cases we only need inner products h�(x),�(x0)i

• These may be expressible in terms of a kernel function

K (x, x0) = h�(x),�(x0)i

that can be computed without explicit computation of �(x)

• For example, polynomial kernel

K (x, x0) = (c + x
T
x
0)k = �(x)T�(x0),

feature vector �(x) consists of monomials of degree  k , but
product is computed in d rather than D =

�d+k
k

�

Montúfar 2024 8/43



Neural networks

• Simple example:

f (x; ✓) =
1

p
m

mX

j=1

vj�(hwj , xi) ✓ = (wj , vj)
m
j=1

L(✓) =
1

2

nX

i=1

(f (xi ; ✓)� yi )
2

• Gradient descent:

✓t+1 = ✓t � ↵t

nX

i=1

(f (xi ; ✓t)� yi ) rf (xi ; ✓t)| {z }
not indep. of ✓t

• In some cases we observe “lazy training”, whereby parameters
remain nearly constant in t.
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• So, consider 1st order Taylor expansion around ✓0:

f (x; ✓) ⇡ f (x; ✓0) +rf (x; ✓0)
T (✓ � ✓0)

This is not linear in x but is linear in ✓.

• Similar to a kernel method with feature map �(x) = rf (x; ✓0).

• The corresponding kernel takes the form

K (x, x0) = hrf (x; ✓0),rf (x0; ✓0)i

Montúfar 2024 10/43



• For our example f (x; ✓) = 1p
m

Pm
j=1 vj�(hwj , xi), the feature

map takes the form:

rwj f (x; ✓) =
1

p
m
vj�

0(hwj , xi)x

rvj f (x; ✓) =
1

p
m
�(hwj , xi)

• The kernel takes the form:

K (x, x0) =Kv (x, x
0) + Kw (x, x

0)

Kw (x, x
0) =

1

m

mX

j=1

v2j �
0(hwj , xi)�

0(hwj , xi)hx, x
0
i

Kv (x, x
0) =

1

m

mX

j=1

�(hwj , xi)�(hwj , x
0
i)

This may be regarded as a sample mean!
Montúfar 2024 11/43



• Then for an infinitely wide network, by law of large numbers,
convergence to the expectation:

Kw (x, x
0)

m!1
����! E[v2�0(hw , xi)�0(hw , xi)hx, x0i]

Kv (x, x
0)

m!1
����! E[�(hw , xi)�(hw , x0i)]

• For example if � ReLU and wj ⇠ rotation invariant distribution:

Kw (x, x
0) =

1

2⇡
hx, x0iE[v2](⇡ � #)

Kv (x, x
0) =

kxkkx
0
kE[kwk

2]

2⇡d
((⇡ � #) cos(#) + sin(#))

Here # is the angle between x and x
0

Montúfar 2024 12/43



Gradient dynamics

• Consider the gradient flow:

d
dt ✓t = �rL(✓t)

• Squared error loss:

L(✓) =1
2kŷ � yk2, ŷ , y 2 Rn

rL(✓) =rŷ (ŷ � y)

• Dynamics of the parameters:

d
dt ✓t = �rŷ (ŷ � y)

• Dynamics of the predictions ŷ :

dŷ

dt
=

dŷ

d✓

d✓

dt
= rŷT d

dt ✓

=�rŷTrŷ| {z }
K

(ŷ � y)
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• If K is approximately constant, then for the residual r = ŷ � y :

d
dt r ⇡� K✓0 · r

rt =r0 e
�K✓0

t

• If K is positive definite, K✓0 > 0, then linear convergence to 0
with rate determined by the least eigenvalue.

• Moreover, spectrum and eigenfunctions,

K✓0 =
nX

i=1

�i⇠i⇠
>
i , �n � · · · � �1 > 0,

give convergence of r along di↵erent components.

• Thus, interest in stability, least eigenvalue and spectrum!
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Parameters vs functions

Gradient descent for ✓ 7! f✓ 7! `(f✓) = L(✓)

• Parameter d
dt ✓ = �r✓L = �JTrf `(f ) (Jacobian J = r✓f T )

• Prediction d
dt f = �J d

dt ✓ = �JJTrf `(f )

• Loss d
dtL = �rf `(f )T JJTrf `(f )

In turn, for rf `(f ) = f � y = r and JJT =
P

i �i⇠i⇠Ti
• If �i � ✏, eventually r = 0

• The ith component of r drops at rate �i
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Neural network

• Fully-connected network with L hidden layers and linear output.

• For a given input x 2 Rd ,

preactivation activation

g (1)(x) = �wW(1)
x+ �bb(1), f (1)(x) = �

�
g (1)(x)

�
,

g (l)(x) = �wp
ml�1

W
(l)f (l�1)(x) + �bb(l), f (l)(x) = �

�
g (l)(x)

�
,

g (L+1)(x) = �wp
mL

W
(L+1)f (L)(x), f (L+1)(x) = g (L+1)(x).

(1)

• Weight matrices W(l)
2 Rml⇥ml�1 , bias vectors b(l) 2 Rml ,

parameters up to lth layer ✓l = (W(h),b(h))lh=1 2 Rp.

• Activation function � : R ! R applied elementwise.

• Hyperparameters �w ,�w 2 R>0, �b,�b 2 R�0.

Montúfar 2024 17/43



Assumption 1

1. At initialization all network parameters are iid N (0, 1).

2. Activation fct � 2 L2(R, �) di↵erentiable a.e., �0
2 L2(R, �).

3. Widths sent to infinity in sequence, m1 ! 1, . . . ,mL ! 1.

• We denote by L2(R, �) the space of functions � : R ! R with

EX⇠N (0,1)[�(X )2] < 1.

• Item 2 is satisfied for ReLU, Tanh, Softplus,...

Montúfar 2024 18/43



Neural Tangent Kernel

• The NTK of f (l) at layer l 2 [L+ 1] is ⇥̃(l) : Rd
⇥ Rd

! R,

⇥̃(l)(x, y) := hr✓l f
(l)(x),r✓l f

(l)(y)i (2)

• Under Assumption 1, for any l 2 [L+ 1],

- ⇥̃(l) converges in probability to a deterministic ⇥(l)4.

- Network behaves like kernelized linear predictor during training5.

• The (infinite width limit) NTK matrix at layer l 2 [L+ 1] for
data X = [x1, . . . , xn]> 2 Rn⇥d is

[Kl ]ij =
1

n
⇥(l)(xi , xj), 8(i , j) 2 [n]⇥ [n]. (3)

4Jacot, Gabriel, and Hongler 2018.

5Arora et al. 2019; Lee et al. 2019; Woodworth et al. 2020.Montúfar 2024 19/43
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Settings

Assumption 2

1. The hyperparameters of the network satisfy

�2w+�2b = 1, �2
wEZ⇠N (0,1)[�(Z )

2]  1, �2
b = 1��2

wEZ⇠N (0,1)[�(Z )
2].

2. The data is normalized so that kxik = 1 for all i 2 [n].

• This ensures the preactivation of each neuron has unit variance,
reminiscent of init to avoid vanishing/exploding gradients.

• Under Assumption 2 we write the NTK as an analytic power
series on [�1, 1] and derive expressions for the coe�cients.
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Hermite expansion

• The normalized probabilist’s Hermite polynomials are defined as

hk(x) =
(�1)kex

2/2

p
k!

dk

dxk
e�x2/2, k = 0, 1, . . .

These form a complete orthonormal basis in L2(R, �)6.
• The Hermite expansion of a function � 2 L2(R, �) is given by

�(x) =
1X

k=0

µk(�)hk(x),

with Hermite coe�cients

µk(�) = EX⇠N (0,1)[�(X )hk(X )].

6O’Donnell 2014.Montúfar 2024 22/43



Notations

• Denote the Hadamard (entrywise) product by X� Y and

X
�p = X� X� · · ·� X.

• Given a Hermitian or symmetric matrix X 2 Rn⇥n, we adopt the
convention that �i (X) denotes the ith largest eigenvalue,

�1(X) � �2(X) � · · · � �n(X).

• For a square matrix we let Tr(X) =
Pn

i=1[X]ii denote the trace.

• XX
T is the Gram matrix of the input data.

Montúfar 2024 23/43



Theorem 1
Under Assumptions 1 and 2, for all l 2 [L+ 1]

nKl =
1X

p=0

p,l
⇣
XX

T
⌘�p

. (4)

The series for each entry n[Kl ]ij converges absolutely.

The p,l are nonnegative and are expressed by following recurrence
relation depending on the Hermite coe�cients µp(�) and µp(�0).
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The coe�cients of the power series (4) are given by

p,l =

(
�p=0�2b + �p=1�2w , l = 1,

↵p,l +
Pp

q=0 q,l�1�p�q,l , l 2 [2, L+ 1],
(5)

where

↵p,l =

(
�2
wµ

2
p(�) + �p=0�2

b, l = 2,
P1

k=0 ↵k,2F (p, k , ↵̄l�1), l � 3,
(6)

and

�p,l =

(
�2
wµ

2
p(�

0), l = 2,
P1

k=0 �k,2F (p, k , ↵̄l�1), l � 3,
(7)

are likewise nonnegative for all p 2 Z�0 and l 2 [2, L+ 1], where
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for a sequence of reals ā = (aj)1j=0 and any p, k 2 Z�0,

• set of k-tuples of nonnegative integers which sum to p

J (p, k) =
�
(ji )i2[k] : ji � 0 8i 2 [k],

kX

i=1

ji = p
 
, 8p 2 Z�0, k 2 N

• sum of ordered products of k-tuples of ā whose indices sum to p

F (p, k , ā) =

8
><

>:

1, k = 0 and p = 0,

0, k = 0 and p � 1,
P

(ji )2J (p,k)

Qk
i=1 aji , k � 1 and p � 0.

(8)

Montúfar 2024 26/43



Assumption 3
The activation fct � : R ! R is absolutely continuous,
di↵erentiable a.e., poly bounded, |�(x)| = O(|x |�).

• This is satisfied by ReLU, Tanh, Sigmoid, Softplus and has
minimal impact on the generality of our results.

• Under Assumption 3, �p,2 = (p + 1)↵p+1,2 and thus to compute
p,l we do not need the Hermite coe�cients of �0.
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Activation and NTK coe�cients

To better understand the relationship between

Hermite coe�cients and NTK coe�cients

consider first the simple two-layer case, i.e., with L = 1,

p,2 = �2
w (1 + �2wp)µ

2
p(�) + �2

w�
2
b(1 + p)µ2

p+1(�) + �p=0�
2
b.

Montúfar 2024 28/43



First few NTK coe�cients

Table 1: Percentage of
P1

p=0 p,2 accounted for by the first T + 1 NTK

coe�cients assuming �2
w = 1, �2

b = 0, �2
w = 1 and �2

b = 1� E[�(Z )2].

T = 0 1 2 3 4 5

ReLU 43.944 77.277 93.192 93.192 95.403 95.403

Tanh 41.362 91.468 91.468 97.487 97.487 99.090

Sigmoid 91.557 99.729 99.729 99.977 99.977 99.997

Gaussian 95.834 95.834 98.729 98.729 99.634 99.634

• Across activation functions, the first few coe�cients account for
the large majority of the total NTK coe�cient series.
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Asymptotic rate of decay of NTK coe�cients

Lemma 2
Under Assumptions 1 and 2,

1. if �(z) = ReLU(z), then p,2 = �(�b>0)[(p even)⇥(p�3/2),

2. if �(z) = Tanh(z), then p,2 = O

⇣
exp

⇣
�

⇡
p
p�1
2

⌘⌘
,

3. if �(z) = !�(z), then p,2 = �(�b>0)[(p even)⇥(p1/2(�2 + 1)�p).

Here !�(z) = (1/
p
2⇡�2) exp

�
�z2/(2�2)

�

• The asymptotic rate of decay of the NTK coe�cients varies
significantly by activation function.
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NTK approximation by truncated series

• Currently computing ⇥(l) requires either explicit evaluation of
Gaussian integrals, or approximation, or wide networks.

• We may also use a truncated power series.

T = 5

T = 50

Figure 1: Absolute error between the analytical ReLU NTK and its
truncated power series, where ⇢ = x

T
y, truncation point T , and depth L.
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E↵ective rank
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E↵ective rank of the NTK

• For convenience drop subscr l and let nK =
P1

p=0 cp(XX
T )�p.

• We study the e↵ective rank of the kernel K, which is defined as

e↵(K) :=
Tr(K)

�1(K)
.

Theorem 3
For general activations (µ0(�) 6= 0) or nonzero bias networks,
c0 6= 0, the e↵ective rank is O(1) as

Tr(K)

�1(K)


P1
i=0 ci
c0

.

For ReLU in Table 1, approx 2.3.

Corollary 4
The largest eigenvalue �1(K) takes up ⌦(1) fraction of the trace
and there are O(1) eigenvalues on the order of �1(K).
Here O and ⌦ is wrt n. By contrast, well-conditioned matrix has rank ⌦(n).
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E↵ective rank of the NTK

• To understand the rest of the spectrum, we analyze the centered
kernel K̃ := K� c01n⇥n.

Theorem 5
The e↵ective rank of the centered kernel K̃ is upper bounded by
the e↵ective rank of the data Gram XX

T

e↵(K̃)  e↵(XXT )

P1
p=1 cp

c1
.

For ReLU in Table 1, approx 1.7.

Corollary 6
Whenever the input data matrix XX

T is approx low rank, K̃ is also
approx low rank. Since real-world data tends to be low-rank, the
NTK also tends to be low-rank!

Theorem 7
Also holds for finite-width shallow ReLU networks.
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Montúfar 2024 35/43



E↵ective rank of the NTK

• To understand the rest of the spectrum, we analyze the centered
kernel K̃ := K� c01n⇥n.

Theorem 5
The e↵ective rank of the centered kernel K̃ is upper bounded by
the e↵ective rank of the data Gram XX

T

e↵(K̃)  e↵(XXT )

P1
p=1 cp

c1
.

For ReLU in Table 1, approx 1.7.

Corollary 6
Whenever the input data matrix XX

T is approx low rank, K̃ is also
approx low rank. Since real-world data tends to be low-rank, the
NTK also tends to be low-rank!

Theorem 7
Also holds for finite-width shallow ReLU networks.
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NTK spectrum mimics input data spectrum

Figure 2: �p/�1 of NTK matrix K and data Gram XX
T .

Width 500, Kaiming uniform init, n = 200, mean across 10 trials and 95%
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Asymptotic decay
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Asymptotic decay of the spectrum

• For a dot product kernel with data uniform on a sphere, the
eigenfunctions are the spherical harmonics7.

• For a kernel function of the form K (x, y) =
P1

p=0 cphx, yi
p,

Azevedo and Menegatto 2015 gave the eigenvals in terms of cp.

• Given a specific decay rate for the coe�cients cp one may derive
the decay rate of �k .

7Basri et al. 2019; Bietti and Mairal 2019.Montúfar 2024 38/43



Asymptotic decay of the spectrum
For the uniform distribution on the sphere Sd , the decay of the
power series coe�cients determines the decay of the spectrum.

• Let �k be the eigenvalue for frequency-k spherical harmonic.

• (ReLU) if cp = ⇥(p�a) with a � 1, then

�k = ⇥(k�d�2a+2),

• (Tanh) if cp = O
�
exp

�
�a

p
p
��
, then

�k = O
⇣
k�d+1/2 exp

⇣
�a

p

k
⌘⌘

,

• (Gaussian) if cp = ⇥(p1/2a�p), then

�k = O
⇣
k�d+1a�k

⌘
and �k = ⌦

⇣
k�d/2+12�ka�k

⌘
.

Recovers ReLU Basri et al. 2019; Bietti and Bach 2021; Geifman et al. 2020;

Velikanov and Yarotsky 2021, gives rates for shallow Tanh and Gaussian
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Figure 3: NTK spectrum of two-layer fully connected networks with
ReLU, Tanh and Gaussian activations under the NTK parameterization.
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Asymptotic decay of the spectrum

Results similar in spirit, albeit weaker, hold for any data on Sd .

• Let r(n) denote the rank of the data matrix.

• If cp = O(p�a) with a > r(n) + 1, then

�n = O
⇣
n�

a�1
r(n)

⌘
,

• if cp = O(e�a
p
p), then, for any a0 < a2�1/2r(n),

�n = O
⇣
n

1
2r(n) exp

⇣
�a0n

1
2r(n)

⌘⌘
,

• if cp = O(e�ap) then, for any a0 < a2�1/2r(n),

�n = O
⇣
exp

⇣
�a0n

1
r(n)

⌘⌘
.
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Conclusions

• A simple power series analysis can be used to characterize both
outlier eigenvalues and asymptotic decay of the NTK spectrum.

• The NTK has a large outlier eigenvalue and O(1) eigenvalues on
the same order of magnitude as the largest eigenvalue.

• If the input data matrix is low rank, the NTK is also low rank.

• The asymptotic decay of the power series coe�cients determines
the asymptotic decay of the spectrum.

• The decay of these coe�cients are in turn driven by the Hermite
coe�cients of the activation function and the network depth.
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Further reading

• A brief intro to the NTK (Ben Bowman)

• Implicit bias of gradient descent for MSE with wide shallow
ReLU nets (with Hui Jin)

• Spectral bias outside the training set for deep nets in the kernel
regime (with Ben Bowman)

• Math Machine Learning seminar MPI MiS + UCLA
https://www.mis.mpg.de/events/series/math-machine-l

earning-seminar-mpi-mis-ucla
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Montúfar 2024 1/10

https://proceedings.neurips.cc/paper/2019/file/dbc4d84bfcfe2284ba11beffb853a8c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dbc4d84bfcfe2284ba11beffb853a8c4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/hash/5ac8bb8a7d745102a978c5f8ccdb61b8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5ac8bb8a7d745102a978c5f8ccdb61b8-Abstract.html


References II

Bietti, Alberto and Francis Bach (2021). “Deep Equals Shallow for
ReLU Networks in Kernel Regimes”. In: International Conference
on Learning Representations. url:
https://openreview.net/forum?id=aDjoksTpXOP.
Bietti, Alberto and Julien Mairal (2019). “On the Inductive Bias of
Neural Tangent Kernels”. In: Advances in Neural Information
Processing Systems. Vol. 32. Curran Associates, Inc. url:
https://proceedings.neurips.cc/paper/2019/file/

c4ef9c39b300931b69a36fb3dbb8d60e-Paper.pdf.
Geifman, Amnon et al. (2020). “On the Similarity between the
Laplace and Neural Tangent Kernels”. In: Advances in Neural
Information Processing Systems. Vol. 33. Curran Associates, Inc.,
pp. 1451–1461. url:
https://proceedings.neurips.cc/paper/2020/file/

1006ff12c465532f8c574aeaa4461b16-Paper.pdf.
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