Deep Learning - Parameters and Functions Mildly Overparametrized ReLU Nets

Guido Montúfar montufar@math.ucla.edu

48th Winter Conference in Statistics, March 2024, Hemavan

Kedar Karhadkar

Michael Murray

Hanna Tseran

• "Mildly Overparameterized ReLU Networks Have a Favorable Loss Landscape"

Parametric model

Parametric model and input data set

Parametric model over the input data set

Function space over the input data set

 Neural networks have a non-convex loss landscape with local minima and plateaus¹.

¹Auer, Herbster, and Warmuth 1995; Fukumizu and Amari 2000; Safran and Shamir 2018; Sontag and Sussmann 1989; MoSwifzrczo Czarnecki, and Pascanu 2017.

- Neural networks have a non-convex loss landscape with local minima and plateaus¹.
- A puzzling question is why bad local minima do not seem to be a problem for training.

¹Auer, Herbster, and Warmuth 1995; Fukumizu and Amari 2000; Safran and Shamir 2018; Sontag and Sussmann 1989; MoSwiftsrczn Zarnecki, and Pascanu 2017.

- Neural networks have a non-convex loss landscape with local minima and plateaus¹.
- A puzzling question is why bad local minima do not seem to be a problem for training.
- Very highly overparameterized networks with d₁ = Ω(n²) are known to have more benevolent loss landscape and follow lazy training.

¹Auer, Herbster, and Warmuth 1995; Fukumizu and Amari 2000; Safran and Shamir 2018; Sontag and Sussmann 1989; Moswifzrczo Czarnecki, and Pascanu 2017.

- Neural networks have a non-convex loss landscape with local minima and plateaus¹.
- A puzzling question is why bad local minima do not seem to be a problem for training.
- Very highly overparameterized networks with $d_1 = \Omega(n^2)$ are known to have more benevolent loss landscape and follow lazy training.
- We can avoid excessive overparameterization by emphasizing qualitative aspects of the loss landscape, using only the rank of the Jacobian rather than e.g. the smallest eigenvalue of the NTK.

¹Auer, Herbster, and Warmuth 1995; Fukumizu and Amari 2000; Safran and Shamir 2018; Sontag and Sussmann 1989; Moswifsrczo Szamecki, and Pascanu 2017.

- Neural networks have a non-convex loss landscape with local minima and plateaus¹.
- A puzzling question is why bad local minima do not seem to be a problem for training.
- Very highly overparameterized networks with $d_1 = \Omega(n^2)$ are known to have more benevolent loss landscape and follow lazy training.
- We can avoid excessive overparameterization by emphasizing qualitative aspects of the loss landscape, using only the rank of the Jacobian rather than e.g. the smallest eigenvalue of the NTK.
- We obtain theorems under more realistic mild overparameterization $d_1 = \Omega(n \log n)$ or even $d_1 = \Omega(1)$ for high-dimensional inputs.

¹Auer, Herbster, and Warmuth 1995; Fukumizu and Amari 2000; Safran and Shamir 2018; Sontag and Sussmann 1989; MoSwifzszan, Zzarnecki, and Pascanu 2017.

- Theorem 2: If $d_0 d_1 \ge n$ and $d_1 = \Omega(\log(\frac{n}{\epsilon d_0}))$, then all activation regions, except for an ϵ fraction, have no bad local minima.
- For generic high-dimensional input data d₀ ≥ n, most non-empty activation regions will have no bad local minima. Extension to deep case.

- Theorem 2: If $d_0 d_1 \ge n$ and $d_1 = \Omega(\log(\frac{n}{\epsilon d_0}))$, then all activation regions, except for an ϵ fraction, have no bad local minima.
- For generic high-dimensional input data d₀ ≥ n, most non-empty activation regions will have no bad local minima. Extension to deep case.
- Theorem 7: If d₀ = 1 and d₁ = Ω(n log(ⁿ/_ε)), all but at most an ε fraction of *non-empty* activation regions have no bad local minima.

- Theorem 2: If $d_0 d_1 \ge n$ and $d_1 = \Omega(\log(\frac{n}{\epsilon d_0}))$, then all activation regions, except for an ϵ fraction, have no bad local minima.
- For generic high-dimensional input data d₀ ≥ n, most non-empty activation regions will have no bad local minima. Extension to deep case.
- Theorem 7: If d₀ = 1 and d₁ = Ω(n log(ⁿ/_ε)), all but at most an ε fraction of *non-empty* activation regions have no bad local minima.
- Theorem 8: If d₀ = 1 and d₁ = d₊ + d₋ with d₊, d₋ = Ω(n log(ⁿ/_ε)), then all but at most an ε fraction of non-empty activation regions contain an affine set of global minima of codimension n.

- Theorem 2: If $d_0 d_1 \ge n$ and $d_1 = \Omega(\log(\frac{n}{\epsilon d_0}))$, then all activation regions, except for an ϵ fraction, have no bad local minima.
- For generic high-dimensional input data d₀ ≥ n, most non-empty activation regions will have no bad local minima. Extension to deep case.
- Theorem 7: If d₀ = 1 and d₁ = Ω(n log(ⁿ/_ε)), all but at most an ε fraction of *non-empty* activation regions have no bad local minima.
- Theorem 8: If d₀ = 1 and d₁ = d₊ + d₋ with d₊, d₋ = Ω(n log(ⁿ/_ε)), then all but at most an ε fraction of non-empty activation regions contain an affine set of global minima of codimension n.
- Theorem 12 provide bounds on the fraction of regions with bad local minima by volume.

Setup

• We consider input and output data

$$X = (x^{(1)}, \ldots, x^{(n)}) \in \mathbb{R}^{d \times n}, \quad y = (y^{(1)}, \ldots, y^{(n)}) \in \mathbb{R}^{1 \times n}.$$

Setup

• We consider input and output data

$$X = (x^{(1)}, \ldots, x^{(n)}) \in \mathbb{R}^{d \times n}, \quad y = (y^{(1)}, \ldots, y^{(n)}) \in \mathbb{R}^{1 \times n}.$$

• We consider a parameterized model

F	:	\mathbb{R}^{m}	X	\mathbb{R}^{d}	\rightarrow	$\mathbb R$
		parameter		input		prediction

and the vector of predictions on input data X,

$$F(\theta, X) := (F(\theta, x^{(1)}), F(\theta, x^{(2)}), \dots, F(\theta, x^{(n)})).$$

Setup

• We consider input and output data

$$X = (x^{(1)}, \dots, x^{(n)}) \in \mathbb{R}^{d \times n}, \quad y = (y^{(1)}, \dots, y^{(n)}) \in \mathbb{R}^{1 \times n}$$

• We consider a parameterized model

and the vector of predictions on input data X,

$$F(\theta, X) := (F(\theta, x^{(1)}), F(\theta, x^{(2)}), \dots, F(\theta, x^{(n)})).$$

• The mean squared error loss $L: \mathbb{R}^m_{parameter} \times \mathbb{R}^{d \times n} \times \mathbb{R}^{1 \times n} \to \mathbb{R}^1$,

$$L(\theta, X, y) := \frac{1}{2} \sum_{i=1}^{n} (F(\theta, x^{(i)}) - y^{(i)})^{2}.$$
(1)

Lemma 1 (Full rank Jacobian implies critical point is global min) Fix a dataset $(X, y) \in \mathbb{R}^{d \times n} \times \mathbb{R}^{1 \times n}$, a parametrized model F, and a differentiable critical point $\theta \in \mathbb{R}^m$ of the squared error loss (1).

If rank $(\nabla_{\theta}F(\theta, X)) = n$, then θ is a global minimizer.

Lemma 1 (Full rank Jacobian implies critical point is global min) Fix a dataset $(X, y) \in \mathbb{R}^{d \times n} \times \mathbb{R}^{1 \times n}$, a parametrized model F, and a differentiable critical point $\theta \in \mathbb{R}^m$ of the squared error loss (1).

If rank $(\nabla_{\theta}F(\theta, X)) = n$, then θ is a global minimizer.

Proof.

$$0 = \nabla_{\theta} L(\theta, X, y) = \underbrace{\nabla_{\theta} F(\theta, X)}_{\mathsf{rank} = n} \cdot \underbrace{(F(\theta, X) - y)}_{= 0}$$

ReLU network

• E.g., a two-layer ReLU network $F : \mathbb{R}^{d_1 \times d_0}_{parameter} \times \mathbb{R}^{d_0} \to \mathbb{R}_{prediction}$

$$F(W, x) = v^T \sigma(W x),$$

where $\sigma: s \mapsto \max\{0, s\}$ componentwise, and $v \in \mathbb{R}^{d_1}$.

ReLU network

• E.g., a two-layer ReLU network $F : \mathbb{R}^{d_1 \times d_0}_{parameter} \times \mathbb{R}^{d_0} \to \mathbb{R}_{prediction}$

$$F(W, x) = v^T \sigma(W x),$$

where $\sigma: s \mapsto \max\{0, s\}$ componentwise, and $v \in \mathbb{R}^{d_1}$.

• To accommodate a bias, we can add a 1 component to x.

ReLU network

• E.g., a two-layer ReLU network $F : \mathbb{R}^{d_1 \times d_0}_{parameter} \times \mathbb{R}^{d_0}_{input} \to \mathbb{R}_{prediction}$

$$F(W, x) = v^T \sigma(W x),$$

where $\sigma: s \mapsto \max\{0, s\}$ componentwise, and $v \in \mathbb{R}^{d_1}$.

- To accommodate a bias, we can add a 1 component to x.
- This map is piecewise polynomial in W, v and piecewise linear in x.

Activation regions and Jacobian

- For data X, the smooth pieces are separated by $\langle w^{(i)}, x^{(j)} \rangle = 0$.
- For each $A = [a^{(1)}, \dots, a^{(n)}] \in \{0, 1\}^{d_1 \times n}$ define activation region

$$\mathcal{S}_X^A := \left\{ W \in \mathbb{R}^{d_1 \times d_0} : (2A_{ij} - 1) \langle w^{(i)}, x^{(j)} \rangle > 0 \ \forall i \in [d_1], j \in [n] \right\}.$$

Parameters so that *i*th unit is active on *j*th data point iff $A_{ij} = 1$.

Activation regions and Jacobian

- For data X, the smooth pieces are separated by $\langle w^{(i)}, x^{(j)} \rangle = 0$.
- For each $A = [a^{(1)}, \dots, a^{(n)}] \in \{0, 1\}^{d_1 \times n}$ define activation region

$$\mathcal{S}_X^A := \left\{ W \in \mathbb{R}^{d_1 \times d_0} : (2A_{ij} - 1) \langle w^{(i)}, x^{(j)} \rangle > 0 \ \forall i \in [d_1], j \in [n] \right\}.$$

Parameters so that *i*th unit is active on *j*th data point iff $A_{ij} = 1$.

The Jacobian of the vector of predictions is

$$abla_ heta F(W,X) = [(v \odot a^{(j)}) \otimes x^{(j)}]_j, \quad orall W \in \mathcal{S}_X^A, \quad orall A.$$

• Similar definitions for deep ReLU nets.

Subdivision of parameter space

Figure 1: Fan of activation regions; activation patterns indicate the input data points on which each unit is active.

Activation regions with no bad local minima

Theorem 2 (Most activation regions are good) Let $\epsilon > 0$. If $d_1 \ge \max\left(\frac{n}{d_0}, \Omega\left(\log\left(\frac{n}{\epsilon d_0}\right)\right)\right)$,

then for generic datasets (X, y), the following holds.

In all but at most an ϵ fraction of all activation regions (i.e. at most $\lceil \epsilon 2^{d_1} \rceil$), every differentiable critical point of L is a global minimum.

Theorem 2 (Most activation regions are good) Let $\epsilon > 0$. If $d_1 \ge \max\left(\frac{n}{d_0}, \Omega\left(\log\left(\frac{n}{\epsilon d_0}\right)\right)\right)$,

then for generic datasets (X, y), the following holds.

In all but at most an ϵ fraction of all activation regions (i.e. at most $\lceil \epsilon 2^{d_1} \rceil$), every differentiable critical point of L is a global minimum.

Uses an upper bound on probability that a binary random matrix is singular. Caveat: This refers to all activation regions, empty or non-empty.

Non-empty activation regions

Subdivision of parameter space

Proposition 3 (Number of non-empty regions)

Consider a network with one layer of d_1 ReLUs. If the columns of X are in general position in a d-dimensional linear space, then the number of non-empty activation regions in the parameter space is $(2\sum_{k=0}^{d-1} \binom{n-1}{k})^{d_1}$.

Regions of a product central hyperplane arrangement.

Subdivision of parameter space

Proposition 3 (Number of non-empty regions)

Consider a network with one layer of d_1 ReLUs. If the columns of X are in general position in a d-dimensional linear space, then the number of non-empty activation regions in the parameter space is $(2\sum_{k=0}^{d-1} {n-1 \choose k})^{d_1}$.

Regions of a product central hyperplane arrangement.

Proposition 4 (Identity of non-empty regions) Let $A \in \{0, 1\}^{d_1 \times n}$. The corresponding activation region is non-empty if and only if $\sum_{j:A_{ij}=1} x^{(j)}$ is a vertex of $\sum_{j \in [n]} \operatorname{conv}\{0, x^{(j)}\}$ for all $i \in [d_1]$.

Combination of covectors of the oriented matroid of the input data.

Figure 2: The polytope *P* of a ReLU on data points $x^{(1)}, x^{(2)}, x^{(3)}$ is the Minkowski sum of the line segments $P_i = \text{conv}\{0, x^{(i)}\}$. The activation regions are the normal cones of *P*. The vertices of *P* correspond to the non-empty activation regions.

High-dimensional input

For high-dimensional inputs, most activation regions are non-empty, thus:

Corollary 5 (Most non-empty activation regions are good)

Under the same assumptions as Theorem 2, if $d \ge n$, then for X in general position and arbitrary y:

In all but at most an ϵ fraction of all non-empty activation regions, every differentiable critical point of L is a zero loss global minimum.

Non-empty activation regions with no bad local minima

For 1D input, we can explicitly list the non-empty activation regions. Lemma 6 (Non-empty activation regions for 1D data) Fix a dataset (X, y) with $x^{(1)} < x^{(2)} < \cdots < x^{(n)}$. Let $A \in \{0, 1\}^{d_1 \times n}$. Then S_X^A is non-empty if and only if the rows of A are step vectors. In particular, there are exactly $(2n)^{d_1}$ non-empty activation regions. Theorem 7 (Most non-empty activation regions are good) Let $\epsilon \in (0, 1)$. Suppose that X consists of distinct data points, and

$$d_1 \ge 2n \log\left(\frac{n}{\epsilon}\right).$$

Then in all but at most an ϵ fraction of non-empty activation regions, $\nabla_{\theta} F$ is full rank and every differentiable critical point of L is a global minimum.

Theorem 8 (Fraction of regions with global minima) Let $\epsilon \in (0, 1)$. Suppose that X consists of distinct data points, and

$$|\{i \in [d_1]: v^{(i)} > 0\}| \ge 2n \log\left(\frac{2n}{\epsilon}\right),$$

and

$$|\{i \in [d_1] : v^{(i)} < 0\}| \ge 2n \log\left(\frac{2n}{\epsilon}\right).$$

Then in all but at most an ϵ fraction of non-empty activation regions S_X^A , the subset of global minimizers $\mathcal{G}_{X,y} \cap \mathcal{S}_X^A$ is a non-empty affine set of codimension n. Moreover, all global minima of L have zero loss.

Nonsmooth critical points

We can extend the analysis to handle points on the boundaries between regions, where the loss is non-differentiable.

Theorem 9 Let $\epsilon \in (0, 1)$. If $d_1 \ge 2n \log\left(\frac{n}{\epsilon}\right)$,

then in all but at most a fraction ϵ of non-empty activation regions A, every local minimum of L in $\mathcal{S}_{X}^{A} \times \mathbb{R}^{d_{1}}$ is a global minimum.

Extension to deep nets

• For $l \in \{0, \dots, L\}$, we define the *l*-th layer $f_l \colon \mathbb{R}^m \times \mathbb{R}^{d_{l-1}} \to \mathbb{R}^{d_l}$ by

$$\begin{split} & f_0(W, x) := x, \\ & f_l(W, x) := \sigma(W_l f_{l-1}(\theta, x)) & \text{if } l \in [L-1], \text{ and} \\ & f_L(W, x) := v^T f_{l-1}(\theta, x), \end{split}$$

where $v \in \mathbb{R}^{d_{l-1}}$ is a fixed vector whose entries are nonzero.

• The activation patterns of a deep network are given by tuples

$$A=(A_1,A_2,\ldots,A_{L-1}),$$

where for each $l \in [L-1]$, $A_l \in \{0,1\}^{d_l \times n}$.

• Denote \mathcal{S}_X^A subset of parameters with activation pattern A.

Theorem 10 Let $X \in \mathbb{R}^{d_0 \times n}$ be an input dataset with distinct points. Suppose that for all $l \in [L-2]$,

$$d_l = \Omega\left(\log\frac{n}{\epsilon L}\right),\,$$

and that

$$d_{L-1} = n + \Omega\left(\log \frac{1}{\epsilon}\right).$$

Then for at least a $(1 - \epsilon)$ fraction of all activation patterns A, the following holds. For all $W \in S_X^A$, $\nabla_W F(W, X)$ has rank n.

Volumes of activation regions

One-dimensional input data

We bound the volume of activation regions with full rank Jacobian in terms of the amount of separation between the data points.

Proposition 11

Let $n \ge 2$. Suppose the entries of v are nonzero. Suppose that for all $j, k \in [n]$ with $j \ne k$, we have $|x^{(j)}| \le 1$ and $|x^{(j)} - x^{(k)}| \ge \phi$. If

$$d_1 \geq rac{4}{\phi} \log\left(rac{n}{\epsilon}
ight),$$

then, writing μ for the Lebesgue measure,

 $\mu(\cup\{\mathcal{S}_X^{\mathcal{A}}\cap [-1,1]^{d_1}\times [-1,1]^{d_1}:\nabla_{w,b}\mathsf{F}\text{ has full rank on }\mathcal{S}_X^{\mathcal{A}}\})\geq (1-\epsilon)2^{2d_1}.$

Arbitrary dimension input data

We say that an input dataset $X \in \mathbb{R}^{d_0 \times n}$ is γ -anticoncentrated if for all nonzero $u \in \mathbb{R}^n$, $\mathbb{P}_{a \sim \mathcal{D}_X}(u^T a = 0) \leq 1 - \gamma$. We can interpret this as a condition on the amount of separation between data points.

Theorem 12 Let $\epsilon, \gamma \in (0, 1)$. Suppose that $X \in \mathbb{R}^{d_0 \times n}$ is generic and γ -anticoncentrated. If

$$d_1 \geq rac{8}{\gamma^2} \log\left(rac{d_0}{\epsilon}
ight) + rac{2}{\gamma} \left(rac{n}{d_0} + 1
ight),$$

then with probability at least $1 - \epsilon$, $\nabla_{(W,v)}F(W, v, X)$ has rank n.

Experiments

Probability of full rank Jacobian for random init

Figure 3: Input dimension d_0 is left fixed. Minimum d_1 to achieve full rank linear in *n*, slope decreases as d_0 increases, as predicted by Theorem 2.

Probability of full rank Jacobian for random init

Figure 3: Input dimension d_0 scales linearly in the number of samples *n*. Minimum d_1 to achieve full rank remains constant in *n*, consistent with Theorem 2.

Percentage of regions with global min, $d_0 = 1$

Figure 4: Percentage of randomly sampled activation regions that contain a global minimum of the loss for networks with $d_0 = 1$. Black line is Theorem 8.

Percentage of regions with global min, $d_0 = 2, 5$

Figure 5: Percentage of randomly sampled activation regions that contain a global minimum for networks with input dimension $d_0 = 2$ (top) and $d_0 = 5$ (bottom). Consistent with Theorem 2 and Corollary 5.

Montúfar 2024

Function space on 1D data

Proposition 13 (Function space on one-dimensional data) Let X be a list of n distinct points in $1 \times \mathbb{R}$ with $x^{(1)} < x^{(2)} < \cdots < x^{(n)}$. Let $\overline{x}^{(i)} = [x_2^{(i)}, -1]$ and $X_{\geq i} = [0, \dots, 0, x^{(i)}, \dots, x^{(n)}]$.

• Then the functions a ReLU represents on X form a polyhedral cone, $\alpha f \in \mathbb{R}^n$ with $\alpha \ge 0$ and f in the polyline with vertices

$$ar{x}^{(i)}X_{\leq i}, \ i=1,\ldots,n$$
 and $-ar{x}^{(i)}X_{\geq i}, \ i=1,\ldots,n.$ (2)

- A sum of m ReLUs represents non-negative scalar multiples of convex combinations of any m points on this polyline.
- Arbitrary linear combinations of m ReLUs represent scalar multiples of affine combinations of any m points on this polyline.

Function space

Figure 6: Function space of a ReLU on *n* data points in $1 \times \mathbb{R}$, for n = 3, 4.

Summary

- We studied the loss landscape of two-layer ReLU networks in the mildly overparameterized regime.
- Most activation regions have no bad differentiable local minima.
- In the univariate case, most non-empty activation regions contain a high-dimensional set of global minimizers.

Further topics

Gradient descent.

References I

Auer, Peter, Mark Herbster, and Manfred K. K Warmuth (1995). "Exponentially many local minima for single neurons". In: Advances in Neural Information Processing Systems. Ed. by D. Touretzky, M.C. Mozer, and M. Hasselmo. Vol. 8. MIT Press. URL: https://proceedings.neurips.cc/paper_files/paper/1995/ file/3806734b256c27e41ec2c6bffa26d9e7-Paper.pdf. Bourgain, Jean, Van H Vu, and Philip Matchett Wood (2010). "On the singularity probability of discrete random matrices". In: Journal of Functional Analysis 258.2, pp. 559-603. URL: https://www. sciencedirect.com/science/article/pii/S0022123609001955. Fukumizu, Kenji and Shun-ichi Amari (2000). "Local minima and plateaus in hierarchical structures of multilayer perceptrons". In: Neural Networks 13.3, pp. 317-327. URL: https://www.sciencedirect.com/science/ article/pii/S089360800000095. Karhadkar, Kedar et al. (2023). "Mildly Overparameterized ReLU Networks

Have a Favorable Loss Landscape". In: arXiv:2305.19510.

References II

Safran, Itay and Ohad Shamir (2018). "Spurious Local Minima are Common in Two-Layer ReLU Neural Networks". In: Proceedings of the 35th International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 4433–4441. URL: https://proceedings.mlr.press/v80/safran18a.html. Sontag, Eduardo and Héctor J. Sussmann (1989). "Backpropagation Can Give Rise to Spurious Local Minima Even for Networks without Hidden Layers". In: Complex Syst. 3. URL: https://www.complex-systems.com/abstracts/v03_i01_a07/. Swirszcz, Grzegorz, Wojciech Marian Czarnecki, and Razvan Pascanu (2017). Local minima in training of deep networks. URL: https://openreview.net/forum?id=Syoiqwcxx.