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Overview

Neural networks have a non-convex loss landscape with local minima
and plateaus?.

A puzzling question is why bad local minima do not seem to be a
problem for training.

Very highly overparameterized networks with d; = Q(n?) are known to
have more benevolent loss landscape and follow lazy training.

We can avoid excessive overparameterization by emphasizing qualitative
aspects of the loss landscape, using only the rank of the Jacobian rather
than e.g. the smallest eigenvalue of the NTK.

We obtain theorems under more realistic mild overparameterization

di = Q(nlog n) or even d; = (1) for high-dimensional inputs.

Moﬁ\{\dﬁ;%gzamecki, and Pascanu 2017.
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For n data points, dy input dimension, d; hidden units, we show:

® Theorem 2: If dody > n and dy = Q(log( 7)), then all activation
regions, except for an € fraction, have no bad local minima.

® For generic high-dimensional input data dy > n, most non-empty
activation regions will have no bad local minima. Extension to deep case.

® Theorem 7: If dy = 1 and di = Q(nlog(2)), all but at most an ¢
fraction of non-empty activation regions have no bad local minima.

® Theorem 8: If dy = 1 and di = d; + d_ with dy,d_ = Q(nlog(2)),
then all but at most an ¢ fraction of non-empty activation regions
contain an affine set of global minima of codimension n.

® Theorem 12 provide bounds on the fraction of regions with bad local
minima by volume.
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® We consider input and output data

X = (X(l), . ,x(")) e R9*",

® We consider a parameterized model

Setup

y = (y(l), . ,y(”)) c Rx",

F: R™ xRY - R

parameter  input prediction

and the vector of predictions on input data X,

F(0,X) = (F(0,xM), F(6,x?),.... F(0,x")).

® The mean squared error loss L:  R™

XRan % Rlxn —)Rl,

parameter inputs outputs

n

1

L6, X,y) =5 Y (F(0,x0) = yy2. (1)

i=1
Montiifar 2024
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Lemma 1 (Full rank Jacobian implies critical point is global min)

Fix a dataset (X,y) € R9*" x RY*" 2 parametrized model F, and a
differentiable critical point @ € R™ of the squared error loss (1).

If rank(VoF (6, X)) = n, then 0 is a global minimizer.
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Lemma 1 (Full rank Jacobian implies critical point is global min)

Fix a dataset (X,y) € R9*" x RY*" 2 parametrized model F, and a
differentiable critical point @ € R™ of the squared error loss (1).

If rank(VoF (6, X)) = n, then 0 is a global minimizer.
Proof.

0= Vol(0,X,y) = VeF(0,X)-(F(6,X)—y).

rank=n =0

L]
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e E.g., a two-layer ReLU network F: R%N*d x R% —

RelLU network

R

parameter  input prediction

F(W,x) = v o(Wx),

where o: s — max{0, s} componentwise, and v € R%.
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RelLU network

e E.g., atwo-layer ReLU network F: RN*d% x R% — R

parameter  input prediction
F(W,x) = v o(Wx),

where o: s — max{0, s} componentwise, and v € R%.
® To accommodate a bias, we can add a 1 component to x.

® This map is piecewise polynomial in W, v and piecewise linear in x.
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Activation regions and Jacobian

* For data X, the smooth pieces are separated by (w(), x0))) = 0.
* Foreach A=[a),... alM] € {0,1}%*" define activation region

S% = {W e RA*% . 24, — 1)(w) xW) > 0vie [d],) € [n]}

Parameters so that ith unit is active on jth data point iff A; = 1.
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Activation regions and Jacobian

For data X, the smooth pieces are separated by (w(), x())) = 0.
For each A =[a), ... a(M] € {0,1}9%" define activation region

S% = {W e RA*% . 24, — 1)(w) xW) > 0vie [d],) € [n]}

Parameters so that ith unit is active on jth data point iff A; = 1.

The Jacobian of the vector of predictions is
VoF(W,X) = [(voaD) o xD];, YW esE, VA

Similar definitions for deep ReLU nets.
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Subdivision of parameter space

Parameter space

x(1) e x(2) Function space
f

Hy"  Hy
H" N H, R,

Hf Ml H{

H2 = X(2)J_ fl
JT_'OO ]:10
Hy = x(O+

Figure 1: Fan of activation regions; activation patterns indicate the input data
points on which each unit is active.
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Activation regions with no bad local minima
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Theorem 2 (Most activation regions are good)

Lete > 0. If
n n
> — Q1 —
o= mox (g0 (1 ().

then for generic datasets (X, y), the following holds.

In all but at most an € fraction of all activation regions (i.e. at most
[€29]), every differentiable critical point of L is a global minimum.
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Theorem 2 (Most activation regions are good)

Lete>0. If
n n
> -
dy > max(do,Q (Iog (ed())))’

then for generic datasets (X, y), the following holds.

In all but at most an € fraction of all activation regions (i.e. at most
[€291] ), every differentiable critical point of L is a global minimum.

Uses an upper bound on probability that a binary random matrix is singular.
Caveat: This refers to all activation regions, empty or non-empty.
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Non-empty activation regions
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Subdivision of parameter space

Proposition 3 (Number of non-empty regions)

Consider a network with one layer of di RelLUs. If the columns of X are in
general position in a d-dimensional linear space, then the number of
non-empty activation regions in the parameter space is (2 Zz;é (";1))d1.

Regions of a product central hyperplane arrangement.
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Subdivision of parameter space

Proposition 3 (Number of non-empty regions)

Consider a network with one layer of di RelLUs. If the columns of X are in
general position in a d-dimensional linear space, then the number of
non-empty activation regions in the parameter space is (2 Zz;é (";1))d1.

Regions of a product central hyperplane arrangement.

Proposition 4 (ldentity of non-empty regions)
Let A € {0,1}%*%". The corresponding activation region is non-empty if
and only if ) A _ xU) is a vertex of 3. conv{O,xU)} for all i € [di].

j€E[n]

Combination of covectors of the oriented matroid of the input data.
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Figure 2: The polytope P of a ReLU on data points x(1), x(?), x(3) is the
Minkowski sum of the line segments P; = conv{0, x(1}.

The activation regions are the normal cones of P.

The vertices of P correspond to the non-empty activation regions.
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High-dimensional input

For high-dimensional inputs, most activation regions are non-empty, thus:

Corollary 5 (Most non-empty activation regions are good)

Under the same assumptions as Theorem 2, if d > n, then for X in general
position and arbitrary y:

In all but at most an € fraction of all non-empty activation regions, every
differentiable critical point of L is a zero loss global minimum.
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Non-empty activation regions with no bad local minima
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For 1D input, we can explicitly list the non-empty activation regions.

Lemma 6 (Non-empty activation regions for 1D data)

Fix a dataset (X,y) with x(1) < x(®) < ... < x("_ et A€ {0,1}9x".
Then S)A< is non-empty if and only if the rows of A are step vectors. In
particular, there are exactly (2n)% non-empty activation regions.
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1D input

Theorem 7 (Most non-empty activation regions are good)
Let € € (0,1). Suppose that X consists of distinct data points, and

di1 > 2nlog (ﬁ) .
€

Then in all but at most an € fraction of non-empty activation regions, VgF
is full rank and every differentiable critical point of L is a global minimum.
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Theorem 8 (Fraction of regions with global minima)
Let € € (0,1). Suppose that X consists of distinct data points, and
. . (,) 2n
{i € [dh] : vV > 0}| > 2nlog ~ )
and

; 2
{i € [dh] : v < 0}| > 2nlog <”) .
€
Then in all but at most an e fraction of non-empty activation regions SQ,

the subset of global minimizers Gx , N S¥ is a non-empty affine set of
codimension n. Moreover, all global minima of L have zero loss.
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Nonsmooth critical points

We can extend the analysis to handle points on the boundaries between
regions, where the loss is non-differentiable.

Theorem 9
Lete € (0,1). If
di > 2nlog (ﬁ) )
€

then in all but at most a fraction € of non-empty activation regions A,
every local minimum of L in 8)’? x R% js a global minimum.
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Extension to deep nets

® For I €{0,...,L}, we define the /-th layer fj: R™ x R¥-1 — R% by

fo(W, x) :==x,
(W, x) :==a(W,fi_1(0,x)) if I € [L—1], and
fL(Wax) ::VTﬁ—l(an)a

where v € R9-1 is a fixed vector whose entries are nonzero.

® The activation patterns of a deep network are given by tuples
A= (A17 A27 s 7AL71)7

where for each / € [L — 1], A; € {0,1}9*".
* Denote S% subset of parameters with activation pattern A.
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Theorem 10
Let X € R%*" pe an input dataset with distinct points. Suppose that for
all 1 € [L—2],
n
d =9 (| 7),
! 8 el
and that

1
di_1=n+%Q (Iog ) .
€

Then for at least a (1 — €) fraction of all activation patterns A, the
following holds. For all W € 8¢, VywF(W, X) has rank n.
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Volumes of activation regions
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One-dimensional input data

We bound the volume of activation regions with full rank Jacobian in
terms of the amount of separation between the data points.

Proposition 11

Let n > 2. Suppose the entries of v are nonzero. Suppose that for all
j, k € [n] with j # k, we have |xU)| <1 and |xU) — x(K)| > . If

di > ;|0g(n>7

€
then, writing 1 for the Lebesgue measure,

p(U{SE N [~1,1]% x [~1,1]% : V,, »F has full rank on S£}) > (1 — €)22%.
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Arbitrary dimension input data

We say that an input dataset X € R%*" is y-anticoncentrated if for all
nonzero u € R", P,up, (u"a =0) < 1—~. We can interpret this as a
condition on the amount of separation between data points.

Theorem 12

Let ¢,y € (0,1). Suppose that X € R%*" js generic and
~-anticoncentrated. If

8 do 2 n
dlz'yzlog(6>+’)/<do+1>’

then with probability at least 1 — ¢, V(y )F(W, v, X) has rank n.
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Experiments
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Figure 3: Input dimension dj is left fixed. Minimum d; to achieve full rank linear

in n, slope decreases as dy increases, as predicted by Theorem 2.
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Figure 3: Input dimension dj scales linearly in the number of samples n. Minimum
d; to achieve full rank remains constant in n, consistent with Theorem 2.
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Percentage of regions with global min, dy =1
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Figure 4: Percentage of randomly sampled activation regions that contain a global
minimum of the loss for networks with dy = 1. Black line is Theorem 8.
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Figure 5: Percentage of randomly sampled activation regions that contain a global

minimum for networks with input dimension dy = 2 (top) and dy = 5 (bottom).

Consistent with Theorem 2 and Corollary 5.
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Function space on 1D data
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Proposition 13 (Function space on one-dimensional data)

Let X be a list of n distinct points in 1 x R with x(1) < x(2) < ... < x(n),

Let x() = [\, —1] and Xs; = [0,...,0,x(), ... x("].

® Then the functions a RelL U represents on X form a polyhedral cone,
af € R” with o > 0 and f in the polyline with vertices

DX, i=1,...,n and —xXs; i=1,...,n. (2)

® A sum of m RelLUs represents non-negative scalar multiples of convex
combinations of any m points on this polyline.

o Arbitrary linear combinations of m RelUs represent scalar multiples of
affine combinations of any m points on this polyline.
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Function space

A

Figure 6: Function space of a ReLU on n data points in 1 x R, for n = 3, 4.
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Summary

® We studied the loss landscape of two-layer ReLU networks in the mildly
overparameterized regime.

® Most activation regions have no bad differentiable local minima.

® |n the univariate case, most non-empty activation regions contain a
high-dimensional set of global minimizers.

Further topics

® Gradient descent.
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