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Overview

• Neural networks have a non-convex loss landscape with local minima
and plateaus1.

• A puzzling question is why bad local minima do not seem to be a
problem for training.

• Very highly overparameterized networks with d1 = ⌦(n2) are known to
have more benevolent loss landscape and follow lazy training.

• We can avoid excessive overparameterization by emphasizing qualitative
aspects of the loss landscape, using only the rank of the Jacobian rather
than e.g. the smallest eigenvalue of the NTK.

• We obtain theorems under more realistic mild overparameterization
d1 = ⌦(n log n) or even d1 = ⌦(1) for high-dimensional inputs.

1
Auer, Herbster, and Warmuth 1995; Fukumizu and Amari 2000; Safran and Shamir 2018; Sontag and Sussmann 1989;

Swirszcz, Czarnecki, and Pascanu 2017.
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Overview

For n data points, d0 input dimension, d1 hidden units, we show:

• Theorem 2: If d0d1 � n and d1 = ⌦(log( n
✏d0

)), then all activation
regions, except for an ✏ fraction, have no bad local minima.

• For generic high-dimensional input data d0 � n, most non-empty

activation regions will have no bad local minima. Extension to deep case.

• Theorem 7: If d0 = 1 and d1 = ⌦(n log(n✏ )), all but at most an ✏
fraction of non-empty activation regions have no bad local minima.

• Theorem 8: If d0 = 1 and d1 = d+ + d� with d+, d� = ⌦(n log(n✏ )),
then all but at most an ✏ fraction of non-empty activation regions
contain an a�ne set of global minima of codimension n.

• Theorem 12 provide bounds on the fraction of regions with bad local
minima by volume.
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Setup

• We consider input and output data

X = (x (1), . . . , x (n)) 2 Rd⇥n, y = (y (1), . . . , y (n)) 2 R1⇥n.

• We consider a parameterized model

F : Rm

parameter
⇥ Rd

input
! R

prediction

and the vector of predictions on input data X ,

F (✓,X ) := (F (✓, x (1)),F (✓, x (2)), . . . ,F (✓, x (n))).

• The mean squared error loss L : Rm
parameter

⇥ Rd⇥n

inputs
⇥ R1⇥n

outputs
! R1,

L(✓,X , y) :=
1

2

nX

i=1

(F (✓, x (i))� y
(i))2. (1)
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Lemma 1 (Full rank Jacobian implies critical point is global min)

Fix a dataset (X , y) 2 Rd⇥n ⇥ R1⇥n
, a parametrized model F , and a

di↵erentiable critical point ✓ 2 Rm
of the squared error loss (1).

If rank(r✓F (✓,X )) = n, then ✓ is a global minimizer.

Proof.

0 = r✓L(✓,X , y) = r✓F (✓,X )| {z }
rank=n

· (F (✓,X )� y)| {z }
=0

.
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ReLU network

• E.g., a two-layer ReLU network F : Rd1⇥d0
parameter

⇥ Rd0
input

! R
prediction

F (W , x) = v
T�(Wx),

where � : s 7! max{0, s} componentwise, and v 2 Rd1 .

• To accommodate a bias, we can add a 1 component to x .

• This map is piecewise polynomial in W , v and piecewise linear in x .
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Activation regions and Jacobian

• For data X , the smooth pieces are separated by hw (i), x (j))i = 0.

• For each A = [a(1), . . . , a(n)] 2 {0, 1}d1⇥n define activation region

SA
X :=

n
W 2 Rd1⇥d0 : (2Aij � 1)hw (i), x (j)i > 0 8i 2 [d1], j 2 [n]

o
.

Parameters so that ith unit is active on jth data point i↵ Aij = 1.

• The Jacobian of the vector of predictions is

r✓F (W ,X ) = [(v � a
(j))⌦ x

(j)]j , 8W 2 SA
X , 8A.

• Similar definitions for deep ReLU nets.
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Subdivision of parameter space

Parameter space
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Figure 1: Fan of activation regions; activation patterns indicate the input data
points on which each unit is active.
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Activation regions with no bad local minima
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Theorem 2 (Most activation regions are good)

Let ✏ > 0. If

d1 � max

✓
n

d0
,⌦

✓
log

✓
n

✏d0

◆◆◆
,

then for generic datasets (X , y), the following holds.

In all but at most an ✏ fraction of all activation regions (i.e. at most

d✏2d1e), every di↵erentiable critical point of L is a global minimum.

Uses an upper bound on probability that a binary random matrix is singular.
Caveat: This refers to all activation regions, empty or non-empty.
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Non-empty activation regions
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Subdivision of parameter space

Proposition 3 (Number of non-empty regions)

Consider a network with one layer of d1 ReLUs. If the columns of X are in

general position in a d-dimensional linear space, then the number of

non-empty activation regions in the parameter space is (2
Pd�1

k=0

�n�1

k

�
)d1 .

Regions of a product central hyperplane arrangement.

Proposition 4 (Identity of non-empty regions)

Let A 2 {0, 1}d1⇥n
. The corresponding activation region is non-empty if

and only if
P

j :Aij=1
x
(j)

is a vertex of
P

j2[n] conv{0, x (j)} for all i 2 [d1].

Combination of covectors of the oriented matroid of the input data.
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000
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(1)
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x
(2)

x
(3)

001

110 011

111

P = P1 + P2 + P3

Figure 2: The polytope P of a ReLU on data points x (1), x (2), x (3) is the
Minkowski sum of the line segments Pi = conv{0, x (i)}.
The activation regions are the normal cones of P .
The vertices of P correspond to the non-empty activation regions.
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High-dimensional input

For high-dimensional inputs, most activation regions are non-empty, thus:

Corollary 5 (Most non-empty activation regions are good)

Under the same assumptions as Theorem 2, if d � n, then for X in general

position and arbitrary y :

In all but at most an ✏ fraction of all non-empty activation regions, every

di↵erentiable critical point of L is a zero loss global minimum.
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Non-empty activation regions with no bad local minima
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For 1D input, we can explicitly list the non-empty activation regions.

Lemma 6 (Non-empty activation regions for 1D data)

Fix a dataset (X , y) with x
(1) < x

(2) < · · · < x
(n)

. Let A 2 {0, 1}d1⇥n
.

Then SA
X is non-empty if and only if the rows of A are step vectors. In

particular, there are exactly (2n)d1 non-empty activation regions.
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1D input

Theorem 7 (Most non-empty activation regions are good)

Let ✏ 2 (0, 1). Suppose that X consists of distinct data points, and

d1 � 2n log
⇣
n

✏

⌘
.

Then in all but at most an ✏ fraction of non-empty activation regions, r✓F

is full rank and every di↵erentiable critical point of L is a global minimum.
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Theorem 8 (Fraction of regions with global minima)

Let ✏ 2 (0, 1). Suppose that X consists of distinct data points, and

|{i 2 [d1] : v
(i) > 0}| � 2n log

✓
2n

✏

◆
,

and

|{i 2 [d1] : v
(i) < 0}| � 2n log

✓
2n

✏

◆
.

Then in all but at most an ✏ fraction of non-empty activation regions SA
X ,

the subset of global minimizers GX ,y \ SA
X is a non-empty a�ne set of

codimension n. Moreover, all global minima of L have zero loss.
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Nonsmooth critical points

We can extend the analysis to handle points on the boundaries between
regions, where the loss is non-di↵erentiable.

Theorem 9
Let ✏ 2 (0, 1). If

d1 � 2n log
⇣
n

✏

⌘
,

then in all but at most a fraction ✏ of non-empty activation regions A,

every local minimum of L in SA
X ⇥ Rd1 is a global minimum.
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Extension to deep nets

• For l 2 {0, . . . , L}, we define the l-th layer fl : Rm ⇥ Rdl�1 ! Rdl by

f0(W , x) :=x ,

fl(W , x) :=�(Wl fl�1(✓, x)) if l 2 [L� 1], and

fL(W , x) :=v
T
fl�1(✓, x),

where v 2 Rdl�1 is a fixed vector whose entries are nonzero.

• The activation patterns of a deep network are given by tuples

A = (A1,A2, . . . ,AL�1),

where for each l 2 [L� 1], Al 2 {0, 1}dl⇥n.

• Denote SA
X subset of parameters with activation pattern A.
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Theorem 10
Let X 2 Rd0⇥n

be an input dataset with distinct points. Suppose that for

all l 2 [L� 2],

dl = ⌦
⇣
log

n

✏L

⌘
,

and that

dL�1 = n + ⌦

✓
log

1

✏

◆
.

Then for at least a (1� ✏) fraction of all activation patterns A, the

following holds. For all W 2 SA
X , rWF (W ,X ) has rank n.
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Volumes of activation regions
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One-dimensional input data

We bound the volume of activation regions with full rank Jacobian in
terms of the amount of separation between the data points.

Proposition 11
Let n � 2. Suppose the entries of v are nonzero. Suppose that for all

j , k 2 [n] with j 6= k , we have |x (j)|  1 and |x (j) � x
(k)| � �. If

d1 �
4

�
log

⇣
n

✏

⌘
,

then, writing µ for the Lebesgue measure,

µ([{SA
X \ [�1, 1]d1 ⇥ [�1, 1]d1 : rw ,bF has full rank on SA

X}) � (1� ✏)22d1 .
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Arbitrary dimension input data

We say that an input dataset X 2 Rd0⇥n is �-anticoncentrated if for all
nonzero u 2 Rn, Pa⇠DX (u

T
a = 0)  1� �. We can interpret this as a

condition on the amount of separation between data points.

Theorem 12
Let ✏, � 2 (0, 1). Suppose that X 2 Rd0⇥n

is generic and

�-anticoncentrated. If

d1 �
8

�2
log

✓
d0

✏

◆
+

2

�

✓
n

d0
+ 1

◆
,

then with probability at least 1� ✏, r(W ,v)F (W , v ,X ) has rank n.
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Experiments
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Probability of full rank Jacobian for random init

d0 = 1 d0 = 2 d0 = 3 d0 = 5

Figure 3: Input dimension d0 is left fixed. Minimum d1 to achieve full rank linear
in n, slope decreases as d0 increases, as predicted by Theorem 2.
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Probability of full rank Jacobian for random init

d0 = dn
4
e d0 = dn

2
e d0 = n d0 = 2n

Figure 3: Input dimension d0 scales linearly in the number of samples n. Minimum
d1 to achieve full rank remains constant in n, consistent with Theorem 2.
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Percentage of regions with global min, d0 = 1

deg 1 deg 2 deg 10

deg 100 Teacher-student Random

Figure 4: Percentage of randomly sampled activation regions that contain a global
minimum of the loss for networks with d0 = 1. Black line is Theorem 8.
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Percentage of regions with global min, d0 = 2, 5

deg 2 Teacher-student Random

deg 2 Teacher-student Random

Figure 5: Percentage of randomly sampled activation regions that contain a global
minimum for networks with input dimension d0 = 2 (top) and d0 = 5 (bottom).
Consistent with Theorem 2 and Corollary 5.
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Function space on 1D data
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Proposition 13 (Function space on one-dimensional data)

Let X be a list of n distinct points in 1⇥ R with x
(1) < x

(2) < · · · < x
(n)

.

Let x
(i) = [x (i)

2
,�1] and X�i = [0, . . . , 0, x (i), . . . , x (n)].

• Then the functions a ReLU represents on X form a polyhedral cone,

↵f 2 Rn
with ↵ � 0 and f in the polyline with vertices

x̄
(i)
Xi , i = 1, . . . , n and � x̄

(i)
X�i , i = 1, . . . , n. (2)

• A sum of m ReLUs represents non-negative scalar multiples of convex

combinations of any m points on this polyline.

• Arbitrary linear combinations of m ReLUs represent scalar multiples of

a�ne combinations of any m points on this polyline.
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Function space

n = 3 n = 4

f1

f2

f3

f1

f2

f3

f4

Figure 6: Function space of a ReLU on n data points in 1⇥ R, for n = 3, 4.
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Summary

• We studied the loss landscape of two-layer ReLU networks in the mildly
overparameterized regime.

• Most activation regions have no bad di↵erentiable local minima.

• In the univariate case, most non-empty activation regions contain a
high-dimensional set of global minimizers.

Further topics

• Gradient descent.
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Sontag, Eduardo and Héctor J. Sussmann (1989). “Backpropagation Can
Give Rise to Spurious Local Minima Even for Networks without Hidden
Layers”. In: Complex Syst. 3. url:
https://www.complex-systems.com/abstracts/v03_i01_a07/.

Swirszcz, Grzegorz, Wojciech Marian Czarnecki, and Razvan Pascanu
(2017). Local minima in training of deep networks. url:
https://openreview.net/forum?id=Syoiqwcxx.
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