Explainable AI-Counterfactual Explanations

Lecture at **"48th Winter Conference in Statistics"** Hemavan, March 12th, 2024

1

4. The explanation should have feature values that are likely

 It makes no sense to tell Peter that he should change the number of transactions on his checking every month account to zero, and at the same time keep his current monthly transaction amount or that he should change his sex.

Source: cartoonstock.com

Dandl et. al. (2020)

• Multi-objective optimization problem:

 $L(x,x',y',X^{obs}) = ig(o_1(\widehat{f}\,(x'),y'), o_2(x,x'), o_3(x,x'), o_4(x',X^{obs}) ig)$

• Each objective corresponds to one of the 4 requirements.

Objectives

• Objective 1: $\hat{f}(x')$ should be as similar as possible to y'

$$o_1(\widehat{f}\left(x'
ight),y') = egin{cases} 0 & ext{if } \widehat{f}\left(x'
ight) \in y' \ \inf_{y' \in y'} |\widehat{f}\left(x'
ight) - y'| & ext{else} \ \end{cases}$$

• Objective 2: x' should be as similar as possible to x

Objectives

• Objective 3: We should change as few features as possible

$$o_3(x,x') = ||x-x'||_0 = \sum_{j=1}^p \mathbb{I}_{x'_j
eq x_j}$$

• Objective 4: The explanation should be likely

$$o_4(x', \mathbf{X}^{obs}) = rac{1}{p} \sum_{j=1}^p \delta_G(x'_j, x^{[1]}_j)$$

Compute the distance between the explanation and the nearest observed data point.

Disadvantages with optimisation-based methods Quite slow Usually restrict the black-box model to be differentiable, meaning that they do not work for tree-based classifiers like XGBoost or random forest. Do not properly handle fixed features (e.g. age, sex and race) Do not produce realistic counterfactuals (e.g. properly modelling the correlation between the variables). Do not handle categorical variables with more than two levels.

Step 3: Postprocessing

- The last step removes the rows of **D** that do not satisfy certain criteria:
 - First, the prediction should be lower than a prespecified limit c.
 - Second, the number of features changed should be as small as possible.
 - Third, the Gower distance between the observation and the counterfactual should be as small as possible.

Gower distance
$$= \frac{1}{q} \sum_{j=1}^{q} \delta_G(d_j, x_j) \in [0, 1],$$

where

 $\delta_G(d_j, x_j) = \begin{cases} \frac{1}{R_j} |d_j - x_j| & \text{if } x_j \text{ is numerical,} \\ \mathbbm{1}_{d_j \neq x_j} & \text{if } x_j \text{ is discrete, categorical, or ordinal,} \end{cases}$

MCCE: Advantages and disadvantages

• ADVANTAGES:

- Does not restrict the black-box model to be differentiable.
- Does properly handle fixed features.
- Does produce realistic counterfactuals
- Does handle categorical variables with more than two levels.
- Breaks up the task of generating counterfactuals into independent steps that can easily be altered without affecting the others.

• DISADVANTAGES:

 May have problems with properly estimating the distribution of X when the dimension is high and the number of samples is low.

Example: Adult data

- Prediction task is to determine whether a person makes over USD 50K a year.
- Variables: Age, FNLWGT, Education, Capital.Gain, Capital.Loss, Hours.per.week, Marital.Status, Country, Occupation, Race, Relationship, Sex, Workclass.
- 30,718 persons, 24% makes over USD 50K a year.
- Split data in training (50%), validation (25%) and test (25%) sets.
- Fit a deep learning model.
- AUC for test set is 0.90.

Method	Age	FNLWGT	Edc.	Gain	Loss	Hr.	MS	Co.	Occ.	Race	Rel.	\mathbf{Sex}	Wor
Original	20	266015	10	0	0	44	NM	US	0	NW	NH	Μ	Р
C-CHVAE	20	247240	10	652	1679	42	M	US	0	NW	H	M	P
CEM-VAE	23	190709	12	10296	0	52	NM	US	0	W	NH	\mathbf{M}	NP
CLUE	11	398962	10	10725	-62	49	NM	US	0	W	NH	\mathbf{M}	P
CRUDS	20	138021	21	4833	210	79	Μ	US	MS	W	H	M	\mathbf{P}
FACE	46	220979	10	13550	0	40	NM	US	0	NW	NH	M	\mathbf{P}
REViSE	20	76456	14	10	379	68	Μ	US	0	W	H	M	P
MCCE	20	348148	10	34095	0	48	NM	US	0	NW	NH	M	Ρ
EM-VAE, CLUI EM-VAE, CLUI	E and F/ E, CRUE	ACE change t)S and REViS	he age: E chan	e which is age the ra	s regarde ice whicl	ed to be n is reg	e fixed arded to	be fixe	ed ("Not	white")			

Software

- Multi-object optimisation:
 - Both R and Python: <u>https://github.com/susanne-207/moc</u>
- MCCE:
 - Python: https://github.com/NorskRegnesentral/mccepy
 - R: https://github.com/NorskRegnesentral/mcceR

Break-out rooms

• Discuss the difference between LIME and Counterfactual explanations.

Old stuff

Nondominated Sorting Genetic Algorithm

- Use the Nondominated Sorting Genetic Algorithm (NSGA-II) to determine the Pareto frontier.
- NSGA-II is a nature-inspired algorithm that applies Darwin's law of the "survival of the fittest".
- The fitness of an explanation is its vector of objective values.
- The result of the optimisation is a diverse set of counterfactuals with different trade-offs between the four objectives.
- For more details, see Dandl et. al. (2020) or the "Interpretable Machine Learning Book".

PD as a function of "duration" and "credit.amount" when keeping the other features fixed.							
	Dur = 10	Dur=20	Dur = 30	Dur = 40	Dur = 50		
Credit.amount=1000	0.29	0.34	0.42	0.51	0.60		
Credit.amount=2000	0.28	0.33	0.42	0.51	0.60		
Credit.amount=3000	0.27	0.33	0.41	0.51	0.60		
Credit.amount=4000	0.27	0.33	0.41	0.52	0.61		
Credit.amount=5000	0.27	0.33	0.42	0.52	0.61		

17