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Quantiles to plan

In design of experimental/observational with simple/complex mechanisms
underlying individual outcomes, we focus on

• θ a parameter value

• d(θ̂) a distribution of a parameter estimate
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Quantiles to plan

A scientific investigation that aims to distinguish between two parameter
values, saying θ0 and θ1, leads to two sampling distributions under the two
hypothetical parameter values.

The sampling distribution d(θ̂) under the two scenarios, compactly
denoted as Qθ0

p and Qθ1
p , is described by all the p-quantiles with p ∈ (0, 1)

Qθ0
p = Qp(d(θ̂); θ = θ0)

Qθ1
p = Qp(d(θ̂); θ = θ1)
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Sample size and power determinations

The specific p-quantiles to choose for Qθ0
p and Qθ1

p in determining the
sample size are up to the investigator and context dependent.

A one-sided test in the upper direction with a type I error of 0.05 and type
II error of 0.20 (or power 0.80) would lead to the following equation

Qθ0
0.95 = Qθ1

0.20

High statistical power to distinguish between θ0 and θ1 is obtained by
setting a top quantile under θ0 to be a bottom quantile under θ1.
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Example: Planning a study on disease incidence

θ0 = 0.2

θ1 = 0.3

Qθ0
0.95 = Qθ1

0.20

θ0 + ϕ−1(0.95)
√
θ0(1− θ0)/n) =

θ1 + ϕ−1(0.20)
√
θ1(1− θ1)/n)

where ϕ−1(p) is the p-quantile of a standard normal distribution. Solving
the equation for n

0.2 + 1.96
√

0.2(1− 0.2)/n) =

0.3− 0.84
√
0.3(1− 0.3)/n)

The sample size n = 109 makes Qθ0
0.95 = Qθ1

0.20 = 0.263.
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Theoretical sampling distributions under alternative
parameter values
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Quantiles to infer - the logic of a test

The test of hypothesis is typically formulated in terms of an inequality
statement regarding the unknown parameter θ. In one-sided test in the
upper direction, the null and alternative hypothesis are defined as follows

H : θ ≤ θ0

H̄ : θ > θ0

Finding what p quantile θ̂ actually is in the sampling distribution centered
about the postulated divisive parameter under θ0 provides a degree p of
epistemic probability for the inequality statement presented in H.
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Quantiles to infer - the logic of a test

Consider a study designed such that Qθ0
0.95 = Qθ1

0.20.

The equation θ̂ = Qθ0
p is solved for p.

θ̂ = θ0 + ϕ−1(p)
√
θ0(1− θ0)/n

p = ϕ

 θ̂ − θ0√
θ0(1−θ0)

n


pvalue = 1− p

The complement of p defining the quantile of an empirical estimate under
H is known as one-side pvalue . It follows that if θ̂ > Qθ0

0.95 then p > 0.95
and pvalue < 0.05.
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Quantiles to infer - the coverage of an empirical quantile

Suppose we replicate K samples under the parameter value equal to θ, the
fraction of samples in which θ ≤ Q̂θ

p should be about p. The coverage of
the empirical p quantile can be appreciated by computing the following
fraction

K∑
i=1

I (θ ≤ Q̂ θ̂
p)

K
≈ p

If the process underlying a large sample of individual observations is
holding then in approximately p% of the K samples the parameter value θ

will be less than or equal Q̂ θ̂
p , for any p.
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Quantiles to infer - the logic of confidence

The degree of confidence (denoted here as C ) or rational belief an
investigator can place in the claim that the unknown parameter θ is less
than or equal to the empirical p-quantile is actually p.

C (θ ≤ Q̂ θ̂
p) = p

The empirical p-quantile, Q̂ θ̂
p , is obtained by shifting and rescaling the

p-quantile of a standard normal distribution. So, expression of confidence
is justified by the shape of the sampling distribution

C

(
θ ≤ θ̂ + ϕ−1(p)

√
θ̂(1− θ̂)/n

)
= p

Schweder, Tore, and Nils Lid Hjort. Confidence, likelihood, probability.
Cambridge University Press, 2016.
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Duality between test of hypothesis and degree of
confidence

The logic of a test consists in locating an empirical estimate in a sampling
distribution centered an hypothetical parameter value; that is θ̂ = Qθ

p .

The logic of confidence consists in locating a parameter value in a

sampling distribution centered about the sample estimate; that is θ = Q θ̂
p .

It is the familiarity with the shape (or all quantiles) of the sampling
distribution produced by a plausible data generating mechanism underlying
individual observations that justifies both ways of drawing statistical
inference about the unknown parameter based on a sample of data.
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Duality between test of hypothesis and degree of
confidence

Denoting with pt the quantile of a sample estimate θ̂ in the sampling
distribution under a parameter value θ and with pc the quantile of
confidence about the unknown parameter θ with respect to θ̂ we have that

θ̂ = Qθ
pt

pt = ϕ

 θ̂ − θ√
θ(1−θ)

n


θ = Q θ̂

pc

pc = ϕ

 θ − θ̂√
θ̂(1−θ̂)

n



The connection is that pt + pc ≈ 1.
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Example: Inference from one sample

In a sample of n = 109 individuals, 24 experienced the adversed health
outcome. The proportion 24/109 = 0.22 is a sample estimate θ̂ of the
unknown θ. The hypothesis to be tested is the following

H : θ ≤ 0.2

H̄ : θ > 0.2

In the logic of testing, we have that the sample estimate 0.22 is the 0.70
quantile of the sampling distribution under θ = 0.2. Since 0.22 < 0.26 (or
0.70 < 0.95), the result of test is compatibility between this sample
proportion θ̂ = 0.22 and the hypothesis H : θ ≤ 0.2.
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Example: Inference from one sample

pt = ϕ

0.22− 0.20√
0.2(1−0.2)

109

 = 0.70

The one-sided pvalue corresponding the statistical test is 1− 0.70 = 0.30.
The divisive parameter value defining the hypothesis H is 0.2. Since 0.2 is
the 0.31 quantile of the sampling distribution under the sample estimate
0.22, the degree of confidence that can be placed in the statement θ ≤ 0.2
is 0.31.

pc = ϕ

 0.2− 0.22√
0.22(1−0.22)

109

 = 0.31

The sum of the two proportions (pt , pc) defining the two quantiles
(0.70 + 0.31) is approximately 1.
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Generalizability of the duality

The almost perfect positive correlation between the degree of confidence
C (θ ≤ θ0) and the one-sided pvalue testing H : θ ≤ θ0 indicates how deeply
connected are the two logics of statistical inference.
This connection is holding no matter

• what is the parameter value θ underlying the sample of data

• what is the divisive parameter θ0 defining the hypothesis H

• what is the minimal distance between θ0 and θ1 in the design of the
study

• what is the sample size n

Once again, the point of contact between the design of the study and the
statistical inference based on one sample of data is the shape of the
sampling distribution and not really its location and scale.
The fundamental act of learning, however, may require a continuous
indication with respect to what is unknown spanning in either directions
about to the actual estimate.
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Example: From one quantile of confidence to all of them

Since 0.2 is the 0.31 quantile of the sampling distribution under the
sample estimate 0.22, the degree of confidence is C (θ ≤ 0.2) = 0.31.
Shifting and rescaling the p-quantile of a standard normal distribution over
the (0,1) interval, one is able to express any degree of confidence about
the unknown parameter.

C
(
θ ≤ 0.22 + ϕ−1(p)

√
0.22(1− 0.22)/109

)
= p

p ∈ (0, 1)

The degree of confidence provided by the point estimate is one half.
Therefore, it is very common to derive extreme quantile of confidence in
either direction from the point estimate.
For example, parameter values 0.14 and 0.30 are the 0.025 and 0.975
quantiles of sampling distribution under the sample estimate, respectively.
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Likely presentation of the results

In a sample of 109 individuals, 24 of them experienced the disease. The
incidence of the disease was 0.22 (95% CI = 0.14, 0.30) with no strong
evidence against the hypothesis of a disease incidence less or equal than
20% (pvalue = 0.30).
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Quantiles to distinguish

The ability of a sample estimate θ̂ to point the investigator toward the
correct choice between θ0 and θ1 can be evaluated by comparing two
random quantiles of Qθ0

p and Qθ1
p .

The intuition is that if the two sampling distributions are easily
distinguishable with θ1 > θ0, then a randomly pick quantile from θ = θ1
should be larger than a randomly pick quantile from θ = θ1 most of the
times.
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Quantiles to distinguish

Given a pair of random quantiles u0 and u1 from a continuous uniform
distribution U(0, 1), an investigator would favour θ = θ1 if Qθ1

u1 > Qθ0
u0 and

θ = θ0 otherwise.

Replicating this process K times, the fraction of times in which Qθ1
u1 > Qθ0

u0
provides a numerical summary of the ability to distinguish between two
parameter values in light of a sample proportion.

K∑
i=1

I (Qθ1
u1 > Qθ0

u0 )

K

The above fraction, ranging from 0.5 (complete overlap) to 1 (complete
separation), is strongly related the non-parametric test for the hypothesis
of equal sampling distributions Qθ0

p = Qθ1
p .
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Quantiles and AUC

It is widely known as the Area Under the Curve (AUC) of a Receiving
Operating Characteristic (ROC) curve. The AUC can also be quantified by
computing the integral of the function f (u)

AUC =

∫ 1

0
f (u) du

where the function f (u) is the (1-Type II probability) statistical power
associated with any u-quantile Qθ0

u that might be chosen to discriminate
between θ0 and θ1

f (u) = 1− ϕ((Qθ0
u − θ1)/

√
θ1(1− θ1)/n)

with u being (1-type I probability) and ϕ is the cumulative distribution
function of a standard normal.
In our example, an investigation planned with a type I error of 5% and
type II error of 20% to distinguish two proportions θ0 = 0.2 and θ1 = 0.3
with a sample size of n = 109 has an AUC of about 96%.
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Quantiles to impute

• Distributed data networks that include multiple data-contributing
sites are increasingly used for data synthesis to improve
evidence-based research and healthcare.

• Data on a key variable of interest can be completely missing in one or
more sites.

• Data from different study sites cannot be pooled into a unified file.
So conventional imputation approaches become unavailable.

• An imputation method can be based on conditional quantiles

Thiesmeier R, Bottai M, Orsini N. Systematically missing data in
individual participant data meta-analysis: multiple imputation when
data cannot be pooled. Statistical Science. Under Review. 2024.
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Steps of Conditional Quantile Imputation

Conditional quantile imputation algorithm
Identify study site(s) with observed data on yij ;
Fit quantile regression models of yij conditional on zij :
Q(p|zij) = zijγj(p) p ∈ {0.01, 0.02, . . . , 0.99};
Take the weighted average of γj(p): γ̄j(p)
and distribute it to sites with systematically missing
values on yij ;
for m ← 1 to M do

Impute yij using γ̄j(p) and zij ;
end
Combine estimates of the substantive model across
imputations using Rubin’s rules.
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Step i: Fitting the imputation model

This step entails fitting the imputation model in the j-th study with
observed data.

To accomplish the task, the quantile function Q, inverse of the cumulative
distribution function, of yij conditionally on a set of predictors zij can be
derived by estimating the p-quantile of yij with a quantile regression model
where p ranges from 0.01 to 0.99

Q(p|zij) = zijγj(p) p ∈ {0.01, 0.02, . . . , 0.99}
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Step ii: Collection and transmission

Step ii involves collecting all sets of regression coefficients from step i. At
a central study site, the conditional quantiles for the systematically missing
values in j ∈ B are based on an inverse-variance weighted average
regression coefficients, defined as γ̄j(p), estimated in studies with no or
partially observed missing data (j ∈ A).

To introduce random variability in the estimated regression coefficients of
the imputation model of any quantile, a random draw from a normal
distribution with mean equal the estimated regression coefficients, γ̄j(p),
and standard deviation equal to the corresponding estimated standard
error, ŜE (γ̄j(p)). Finally, the vector of regression coefficients, γ̄j(p) is then
transmitted to the study sites with systematically missing values to be
used for imputation.
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Step iii: Imputing the systematically missing values

In MI each missing value yij , with i ∈ Mj and j ∈ B, is replaced by M

independent imputed values. We denote y
(m)
ij as the m-th imputation of a

missing value in yij . The following steps define the process underlying the
assignment of a single value:

1 Draw a quantile U from a random continuous uniform distribution
U(0, 1).

2 Extract the floor L = ⌊U%⌋ and modulus W = U − ⌊U%⌋.
3 Compute the weighted average of the L and L+ 1 conditional

predicted quantiles
C = (1−W )Q̂L(p|zij) +WQ̂L+1(p|zij).

4 Assign y
(m)
ij = argmink∈V |C − V |[k] where V is a list of unique

observed values of yij .
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Quantiles to simulate

Observations from any distribution can be generated using the inverse
transformation method, that is, the quantile function.

Monte-Carlo simulations (computer experiments) are useful to obtain
sampling distributions of quantities of interest.

In our example, we examine the performance of the proposed imputation
method.

To illustrate the use of CQI as an imputation approach when data cannot
be pooled, a simplified scenario of an IPD meta-analysis of observational
studies with a confounding variable is proposed.

An observational cohort study with a binary exposure and outcome
variable, one continuous predictor of the outcome, and one continuous
confounding variable.
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Mechanism underlying individual data

The following random variables define a single study:

• V is a binary predictor of the outcome: V ∼ B(πv ), with a πv = 0.4.

• C is a continuous confounding variable: C ∼ χ2
d , where d are the

degrees of freedom.

• E is a binary exposure variable: E ∼ B(πe) where
πe = expit(α0 + α1 · C ).

• D is the binary outcome variable: D ∼ B(πd) where
πd = expit(β0 + β1 · E + β2 · V + β3 · C ).

Of note, the variable C is determining both the probability of being
exposed, πe , and independently of the exposure E , the outcome
probability, πd .
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Simulated scenarios

• IPD meta-analyses were generated under a common and
heterogeneous confounding mechanism

• 20% of the studies having systematically missing values on the
confounding variable, C . That is, for IPD meta-analysis with 5, 10,
and 20 studies, the confounder C was set to 100% missing in 1/5,
2/10, and 4/20 studies, respectively.

• The sample size for all scenarios was set to 500 individuals in each
study.
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Negligible bias of the conditional quantile imputation

Figure: Sampling distribution of the confounding-adjusted log odds ratio under a
common effect after using conditional quantile imputation for systematically
missing values. The individual participant data meta-analysis included 5, 10, and
20 studies. The dotted line represents the set parameter of β1 = 0.405.
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Similar performance in common and heterogeneous
confounding effect

Figure: Distribution of the confounding-adjusted log odds ratio under a
heterogeneous effect with τ = 0.01 and τ = 0.1 for 5, 10, and 20 studies included
in the individual participant data meta-analysis. Distributions are shown after the
use of conditional quantile imputation to impute systematically missing values.
The dotted line represents the set parameter of β1 = 0.405
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Final remarks

• Quantiles are used to calibrate and plan (sample size, error
probabilities) a scientific study

• Quantiles are crucial to express a degree of confidence about an
inequality statement involving an unknown parameter

• Quantiles are used to measure the ability to discriminate between two
continuous distributions (ROC-AUC)

• Quantiles are used to impute variables partially or completely missing
in single or multiple studies

• Quantiles are used to generate individual data according to any
plausible mechanism
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