

High-dimensional bandits: when is SVD provably all you need?

Stefan Stojanovic (stesto@kth.se)

joint work with Y. Jedra, W. Reveillard, A. Proutiere

Winter Conference in Statistics 2024, Hemavan

- Intro to bandits (finite-armed/linear)
- Bandits with hidden low dimensional structure
- Entry-wise matrix recovery using SVD

find structure & reduce to simpler low dim. problem

Entry-wise guarantees for SVD provide framework for obtaining tightest known regret bounds $O(d^{3/4}\sqrt{T})$ for low-rank bandits!

Main references

- A. Stojanovic, Stefan, Yassir Jedra, and Alexandre Proutiere. "Spectral entry-wise matrix estimation for low-rank reinforcement learning." Advances in Neural Information Processing Systems 36 (2024).
- B. Jedra, Yassir*, William Reveillard*, Stefan Stojanovic*, Alexandre Proutiere. "Low-Rank Bandits via Tight Two-to-Infinity Singular Subspace Recovery." *arXiv preprint arXiv:2402.15739* (2024).

What is not coming next

- Best arm identification
- Policy evaluation
- Mathematical rigour
- Monologue?

Open problems

- Achieving upper regret bound of $O(\sqrt{dT})$
- Reconciling adaptivity and low-dimensional structure recovery

Main references

- A. Stojanovic, Stefan, Yassir Jedra, and Alexandre Proutiere. "Spectral entry-wise matrix estimation for low-rank reinforcement learning." Advances in Neural Information Processing Systems 36 (2024).
- B. Jedra, Yassir*, William Reveillard*, Stefan Stojanovic*, Alexandre Proutiere. "Low-Rank Bandits via Tight Two-to-Infinity Singular Subspace Recovery." *arXiv preprint arXiv:2402.15739* (2024).

minimax optimal algorithms for low-rank bandits in B.

Sequential decision making with uncertainty ...or simply bandits

• (1933) William R. Thompson

Stats

- (1950) Mosteller & Bush:
 "two armed bandit" machine
- Robbins, Chernoff, Lai...
- treatments, mices and spaceships

RL

- exploration-exploitation trade-off
- (2015) used in AlphaGo
- advert placement
- recommendation services (Spotify, Netflix...) s_{t+1}
- big tech

He-off +1 $r_t(a_t, s_t)$ s_t

 $P(s_{t+1}|s_t, a_t)$

Main source for introduction: Lattimore, Tor, and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

Stochastic bandits with finitely many arms

• How to choose arms based on history to minimize the regret?

for t = 1, 2, ..., T do Choose an arm a_t based on history $(a_1, r_1, ..., a_{t-1}, r_{t-1})$; Observe noisy reward $r_t = \mu_{a_t} + \eta_t$; end Output: regret $R_T = \max_a \sum_{t=1}^T (\mu_a - \mu_{a_t})$

• Exploration-exploitation trade-off: choose each arm *lagom* number of times

Stochastic linear bandits

- Arms have feature representations $a \in \mathcal{A} \subset \mathbb{R}^d$
- Obtain rewards $r_t = \langle heta^\star, a_t
 angle + \eta_t$
- Minimize regret $R_T = \max_{a \in \mathcal{A}} \sum_{t=1}^T \langle \theta^*, a a_t \rangle$
- First idea:

$$\hat{\theta}_t = (\lambda I + \sum_{i=1}^t a_i a_i^\top)^{-1} \sum_{i=1}^t a_i r_i$$
$$a_t = \arg \max_{a \in \mathcal{A}} \langle \hat{\theta}_t, a \rangle$$

• Issue: too greedy, no exploration

Optimism is key to success!

• First idea: choose
$$\hat{\theta}_t = (\lambda I + \sum_{i=1}^t a_i a_i^{\top})^{-1} \sum_{i=1}^t a_i r_i$$

 V_t
 $a_t = \arg \max_{a \in \mathcal{A}} \langle \hat{\theta}_t, a \rangle$

- Optimism under uncertainty (LinUCB):
 - Confidence ellipsoid $C_t = \{ \theta \in \mathbb{R}^d : \|\theta \hat{\theta}_t\|_{V_{t-1}}^2 \leq \beta_t \}$
 - Choose action $a_t = \arg \max_{a \in \mathcal{A}} \max_{\theta \in \mathcal{C}_t} \langle \theta, a \rangle$

- With high probability $heta^\star \in \mathcal{C}_t, orall t\,$ and volume of \mathcal{C}_t shrinks
- Optimal in many ways
- Takeaway: optimism encourages exploration

Low-rank stochastic bandits

- High dimensional setting: number of samples \ll number of arms
- Structural assumptions: sparsity, block structures, **low-rank** •
- Instead of $\theta^\star \in \mathbb{R}^d$, assume $\Theta^\star \in \mathbb{R}^{d \times d}$ with $\mathrm{rank}(\Theta^\star) = r \ll d$
- But why low-rank bandits?

 $\Theta_{1,1}^{\star}$... $\Theta_{1,d}^{\star}$ for t = 1, 2, ..., T do Choose an arm pair (i_t, j_t) ; Observe noisy reward $r_t = \Theta_{i_t, j_t}^{\star} + \eta_t$; pick row end **Output**: regret $R_T = \max_{(i,j)} \sum_{t=1}^T (\Theta_{i,j}^{\star} - r_t)$ $\Theta_{d,1}^{\star}$ • • •

- Number of arms: d^2 , number of samples $T \ll d^2$
- Trace regression $Y_t = \text{Tr}(\Theta^* X_t^\top) + \eta_t$ with $X_t = e_{i_t} e_{j_t}^\top$

"Många bäckar små gör en stor å", reverse?

 $\Theta^{\star} = U \begin{vmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_r \end{vmatrix} U^{\top} = U\Sigma U^{\top}$

- Recover a low-rank matrix? Use SVD!
- Empirical estimate $\widetilde{\Theta}$ after projection: $\widehat{\Theta}=\widehat{U}\widehat{\Sigma}\widehat{U}^\top$
- Condition number $\kappa = \frac{\sigma_{\max}}{\sigma_{\min}}$ and incoherence: $\mu = \sqrt{\frac{d}{r}} \|U\|_{2 \to \infty} = \sqrt{\frac{d}{r}} \max_{i \in [d]} \|U_{i,:}\|_2$
- Is global (Frobenius norm) recovery sufficient?

Entry-wise recovery guarantees

• For $T = \widetilde{\Omega}(d \cdot \operatorname{poly}(\mu, \kappa, r))$ w.h.p:

$$\|U - \widehat{U}(\widehat{U}^{\top}U)\|_{2 \to \infty} = \widetilde{O}\left(\frac{1}{\sqrt{T}} \operatorname{poly}(\mu, \kappa, r)\right)$$

- Even in independent setting difficult to analyse $\|(\widetilde{\Theta}-\Theta^\star)\widehat{U}\|_{2 o\infty}$ because $\widetilde{\Theta},\widehat{U}$ are dependent
- Our case: approximate entries by independent Compound Poisson random variables to remove dependences

- Questions?
- Wake-up time!
- Recap for forgetful:

Linear Bandits

- No structure
- Need to try all arms
- Known optimal algorithms
- Regret $O(\sqrt{\dim(\mathcal{A})T})$

low-dimensional singular subspace guarantees

$$\|U - \widehat{U}(\widehat{U}^\top U)\|$$

Low-rank Bandits

- Low-rank rewards matrix Θ^{\star}
- Sample deficient regime:
 - Cannot try all arms
 - Shared information
- Unknown optimal algorithms
- Goal: regret $O(\sqrt{dT})$ while $\dim(\mathcal{A}) = d^2$

Cautious approach: reduction to almost low-dimensional linear bandits*

• Projection on singular vectors subspace: $\operatorname{proj}(U) = U(U^{\top}U)^{-1}U^{\top} = UU^{\top}$

 $\Theta_{i,j}^{\star} = e_i^{\top} \widehat{U} (\widehat{U}^{\top} \Theta^{\star} \widehat{U}) \widehat{U}^{\top} e_j + e_i^{\top} \widehat{U} (\widehat{U}^{\top} \Theta^{\star} \widehat{U}_{\perp}) \widehat{U}_{\perp}^{\top} e_j + e_i^{\top} \widehat{U}_{\perp} (\widehat{U}_{\perp}^{\top} \Theta^{\star} \widehat{U}) \widehat{U}^{\top} e_j + e_i^{\top} \widehat{U}_{\perp} (\widehat{U}_{\perp}^{\top} \Theta^{\star} \widehat{U}_{\perp}) \widehat{U}_{\perp}^{\top} e_j.$

• Or equivalently:
$$\Theta_{i,j}^{\star} = \langle \theta, \phi_{i,j} \rangle$$
 with $\phi_{i,j} = \begin{bmatrix} \operatorname{vec}(\hat{U}^{\top}e_i e_j^{\top}\hat{U}) \\ \operatorname{vec}(\hat{U}^{\top}e_i e_j^{\top}\hat{U}_{\perp}) \\ \operatorname{vec}(\hat{U}^{\top}_{\perp}e_i e_j^{\top}\hat{U}) \\ \operatorname{vec}(\hat{U}^{\top}_{\perp}e_i e_j^{\top}\hat{U}_{\perp}) \end{bmatrix}$, $\theta = \begin{bmatrix} \operatorname{vec}(\hat{U}^{\top}\Theta^{\star}\hat{U}) \\ \operatorname{vec}(\hat{U}^{\top}_{\perp}\Theta^{\star}\hat{U}) \\ \operatorname{vec}(\hat{U}^{\top}_{\perp}e_i e_j^{\top}\hat{U}) \\ \operatorname{vec}(\hat{U}^{\top}_{\perp}\Theta^{\star}\hat{U}_{\perp}) \end{bmatrix}$

• Subspace recovery implies: $\|\widehat{U}_{\perp}^{\top}\Theta^{\star}\widehat{U}_{\perp}\|_{F} \leq \|U - \widehat{U}(\widehat{U}^{\top}U)\|_{F}^{2}\|\Theta^{\star}\|_{2}$

- Algorithm idea:
 - Find the structure: explore uniformly at random to obtain \widehat{U}
 - Exploit the structure: use (Sup)LinUCB with

$$\hat{\theta}_{\tau} = (\mathbf{\Lambda} + \sum_{t=1}^{\tau} \phi_{i_t, j_t} \phi_{i_t, j_t}^{\top})^{-1} \sum_{t=1}^{\tau} \phi_{i_t, j_t} r_t \qquad \mathbf{\Lambda} = \operatorname{diag}(\lambda, \lambda, \dots, \lambda_{\perp}, \lambda_{\perp}, \dots)$$

• Regret satisfies $R_T = \widetilde{O}(\operatorname{poly}(\mu, \kappa, r)d\sqrt{T})$

regularize less first r(2d-r) entries

*Jun, Kwang-Sung, et al. "Bilinear bandits with low-rank structure." International Conference on Machine Learning. PMLR, 2019.

Indifferent approach: reduction to misspecified linear bandits

- Can we leverage instead our tight entry-wise guarantees?
- Define $\varepsilon_{i,j} = e_i^\top \widehat{U}_\perp (\widehat{U}_\perp^\top \Theta^\star \widehat{U}_\perp) \widehat{U}_\perp^\top e_j$
- Reduction to misspecified linear bandits:

$$\Theta_{i,j}^{\star} = \langle \theta, \phi_{i,j} \rangle + \varepsilon_{i,j} \text{ with } \phi_{i,j} = \begin{bmatrix} \operatorname{vec}(\widehat{U}^{\top} e_i e_j^{\top} \widehat{U}) \\ \operatorname{vec}(\widehat{U}^{\top} e_i e_j^{\top} \widehat{U}_{\perp}) \\ \operatorname{vec}(\widehat{U}_{\perp}^{\top} e_i e_j^{\top} \widehat{U}) \end{bmatrix}, \quad \theta = \begin{bmatrix} \operatorname{vec}(\widehat{U}^{\top} \Theta^{\star} \widehat{U}) \\ \operatorname{vec}(\widehat{U}_{\perp}^{\top} \Theta^{\star} \widehat{U}) \\ \operatorname{vec}(\widehat{U}_{\perp}^{\top} \Theta^{\star} \widehat{U}) \end{bmatrix}.$$

- Subspace recovery implies: $\max_{i,j} |\varepsilon_{i,j}| \le \|U \widehat{U}(\widehat{U}^\top U)\|_{2\to\infty}^2 \|\Sigma^\star\|_2$
- Algorithm idea:
 - Find the structure: explore uniformly at random to obtain \widehat{U}
 - Exploit the structure: use (Sup)LinUCB with

$$\hat{\theta}_{\tau} = (\lambda I + \sum_{t=1}^{\tau} \phi_{i_t, j_t} \phi_{i_t, j_t}^{\top})^{-1} \sum_{t=1}^{\tau} \phi_{i_t, j_t} r_t$$

- Regret satisfies $R_T = \widetilde{O}(\text{poly}(\mu,\kappa,r)d^{3/4}\sqrt{T})$
- First algorithm achieving not-trivial tightness in dimension!

So, when is SVD all you need?

- For regret minimization (/ best arm identification / policy evaluation) in low-rank bandits with
 - incoherent subspaces
 - known rank
 - contexts (if nearly uniformly distributed)
 - not too large dimension
- Lowest reported upper bound on regret, but probably still not optimal

Discovering structure adaptively is hard!

- Proposed algorithms explore uniformly at random
- Can we do adaptive exploration + low-rank structure recovery?

Main references

- A. Stojanovic, Stefan, Yassir Jedra, and Alexandre Proutiere. "Spectral entry-wise matrix estimation for low-rank reinforcement learning." Advances in Neural Information Processing Systems 36 (2024).
- B. Jedra, Yassir*, William Reveillard*, Stefan Stojanovic*, Alexandre Proutiere. "Low-Rank Bandits via Tight Two-to-Infinity Singular Subspace Recovery." *arXiv preprint arXiv:2402.15739* (2024).