Hoppa direkt till innehållet
printicon
Huvudmenyn dold.
Kursplan:

Matematiska metoder, 7,5 hp

Engelskt namn: Mathematical Methods

Denna kursplan gäller: 2022-01-17 och tillsvidare

Kurskod: 6MA055

Högskolepoäng: 7,5

Utbildningsnivå: Grundnivå

Huvudområden och successiv fördjupning: Matematik: Grundnivå, har endast gymnasiala förkunskapskrav

Betygsskala: För denna kurs ges betygen VG Väl godkänd, G Godkänd, U Underkänd

Ansvarig institution: Institutionen för matematik och matematisk statistik

Beslutad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2021-02-03

Innehåll

Kursen syftar till att förbereda för fortsatta studier i matematik, och är indelad i två moduler.
 
Modul 1 (6,5 hp) Geometri och funktionslära
I modulen läggs särskild vikt vid allmän räknefärdighet, begreppsförståelse, matematiska resonemang och enklare formella bevis. Kursen behandlar såväl euklidisk som analytisk geometri, elementära funktioner, absolutbelopp, ekvationer och olikheter. I modulen övas också skriftlig och muntlig presentation.

Modul 2 (1 hp) Programmering och digitala verktyg
I modulen introduceras och kontrasteras programmeringsspråket Python och programvaran Matlab. Grundläggande programmeringsteknik behandlas. Detta används sedan för enklare undersökningar och beräkningar.

Förväntade studieresultat

För godkänd kurs ska den studerande kunna

Kunskap och förståelse
  • redogöra för grundläggande begrepp inom funktionslära och geometri
  • redogöra för elementära funktioners egenskaper
  • redogöra för viktiga satser inom den Euklidiska geometrin
Färdighet och förmåga
  • visa god säkerhet gällande algebraiska omskrivningar
  • lösa ekvationer och olikheter där elementära funktioner ingår
  • identifiera och beskriva klassiska kägelsnitt
  • följa och själv genomföra stringenta matematiska resonemang och formella bevis på en grundläggande nivå
  • genomföra beräkningar och undersökningar med stöd av grundläggande programmering och digitala verktyg
  • kommunicera matematiska kunskaper såväl skriftligt som muntligt
Värderingsförmåga och förhållningssätt
  • kritiskt granska egna och andras matematiska resonemang

Behörighetskrav

För tillträde till kursen krävs Matematik D eller Matematik 4 (områdesbehörighet 9/A9 med ett eller flera undantag) eller motsvarande.

Undervisningens upplägg

Undervisningen på bedrivs i huvudsak i form av föreläsningar, grupparbeten, lektionsundervisning och handledning av laborationsuppgifter.

Examination

Examinationen på modul 1 sker i form av skriftliga prov samt muntliga och skriftliga redovisningar av grupparbeten och för modul 2 i form av laborationsuppgifter. På de skriftliga proven ges något av omdömena Underkänd (U), Godkänd (G) eller Väl Godkänd (VG). På de muntliga och skriftliga redovisningarna samt på laborationsuppgifterna ges endast något av omdömena Underkänd (U) eller Godkänd (G). Samtliga delar av examinationen ska vara godkända för godkänt betyg på hela kursen. På kursen ges något av betygen Underkänd (U), Godkänd (G) och Väl Godkänd (VG). Betyg på kurs bestäms av omdömet på det skriftliga provet.

Avsteg från kursplanens examinationsform kan göras för en student som har beslut om pedagogisk stöd på grund av funktionsnedsättning. Individuell anpassning av examinationsformen ska övervägas utifrån studentens behov. Examinationsformen anpassas inom ramen för kursplanens förväntade studieresultat. Efter begäran av studenten ska kursansvarig lärare, i samråd med examinator, skyndsamt besluta om anpassad examinationsform. Beslutet ska sedan meddelas studenten.

Den som godkänts i prov får ej undergå förnyat prov för högre betyg. Ett omprov ska erbjudas senast två månader efter ordinarie provtillfälle, dock ska omprov erbjudas tidigast tio arbetsdagar efter det att resultatet av det ordinarie provet har meddelats och kopia av studentens tentamen är tillgänglig. Dessutom skall minst ytterligare ett omprov erbjudas inom ett år från ordinarie provtillfälle, s.k. uppsamlingsprov.
I de fall prov eller obligatoriska undervisningsmoment inte kan upprepas enligt gällande regler för omprov och ompraktik kan det istället ersättas med annan uppgift. Omfattningen av och innehållet i sådan uppgift skall stå i rimlig proportion till det missade obligatoriska momentet.
En student som utan godkänt resultat har genomgått två prov för en kurs eller en del av en kurs, har rätt att få en annan examinator utsedd, om inte särskilda skäl talar emot det (HF 6 kap. 22 §). Begäran om ny examinator ställs till prefekten för institutionen för matematik och matematisk statistik.

Tillgodoräknande
Student har rätt att få prövat om tidigare utbildning eller motsvarande kunskaper och färdigheter förvärvade i yrkesverksamhet kan tillgodoräknas för motsvarande utbildning vid Umeå universitet. Ansökan om tillgodoräknande skickas in till Studentcentrum/Examina. Mer information om tillgodoräknande finns på Umeå universitets studentwebb, www.student.umu.se, och i högskoleförordningen (6 kap). Ett avslag på ansökan om tillgodoräknande kan överklagas (Högskoleförordningen 12 kap) till Överklagandenämnden för högskolan. Detta gäller såväl om hela som delar av ansökan om tillgodoräknande avslås.

Övriga föreskrifter

Denna kurs får ej ingå i en examen tillsammans med en annan kurs med likartat innehåll. Vid osäkerhet bör den studerande rådfråga studierektorn i matematik och matematisk statistik.

I de fall kursplanen upphör att gälla eller genomgår större förändringar, erbjuds minst tre provtillfällen (inklusive ordinarie provtillfälle) enligt föreskrifterna i den ändrade eller nedlagda kursplanen.

Litteratur

Giltig från: 2022 vecka 3

Albertson Fredrik
Basfärdigheter i algebra : en förberedelse till högskolestudier
2., [rev. och utök.] uppl. : Lund : Studentlitteratur : 2003 : 292 s. :
ISBN: 91-44-03128-9
Obligatorisk
Se bibliotekskatalogen Album

Lindahl Göran
Euklides geometri
Stockholm : Natur och kultur : 1987 : 63, [1] s. :
ISBN: 91-27-72185-X ; 102:00
Obligatorisk
Se bibliotekskatalogen Album
Läsanvisning: Kompendium, tillhandahålles av institutionen

Övrigt material som tillhandahålles av institutionen
Institutionen för matematik och matematisk statistik :
Obligatorisk