"False"
Skip to content
umu.se
For students
For researchers
Library
For staff
Login
Students
Log into the student web
Edit
Edit content at umu.se
Svensk webbplats
Search
Menu
X close menu
Menu
Search
Search within:
Search within:
All
Education
Research
Staff
Student web
News
Main menu hidden.
Login
Students
Log into the student web
Edit
Edit content at umu.se
Svenska
Mickaël Zehren
Contact
E-mail
mickael.zehren@umu.se
Works as
Affiliation
Staff scientist
at
High Performance Computing Centre North (HPC2N)
Location
MIT huset, Campustorget 5, 4 tr
Umeå universitet, 901 87 Umeå
Publications
Publications
Research
Research
Mentions
Mentions
2024
Interpretability of methods for switch point detection in electronic dance music
Signals
, MDPI 2024, Vol. 5, (4) : 642-658
Zehren, Mickael; Alunno, Marco; Bientinesi, Paolo
2024
Towards automatic DJ mixing: cue point detection and drum transcription
Report / UMINF
, 24.08
Zehren, Mickaël
2024
In-depth performance analysis of the ADTOF-based algorithm for automatic drum transcription
Proceedings of the 25th international society for music information retrieval conference
, San Francisco: ISMIR 2024 : 1060-1067
Zehren, Mickaël; Alunno, Marco; Bientinesi, Paolo
2023
High-quality and reproducible automatic drum transcription from crowdsourced data
Signals
, MDPI 2023, Vol. 4, (4) : 768-787
Zehren, Mickaël; Alunno, Marco; Bientinesi, Paolo
2022
Automatic detection of cue points for the emulation of DJ mixing
Computer music journal
, MIT Press 2022, Vol. 46, (3) : 67-82
Zehren, Mickaël; Alunno, Marco; Bientinesi, Paolo
2021
ADTOF: A large dataset of non-synthetic music for automatic drum transcription
Proceedings of the 22nd International Society for Music Information Retrieval Conference
: 818-824
Zehren, Mickaël; Alunno, Marco; Bientinesi, Paolo
2019
M-DJCUE: a manually annotated dataset of cue points
20th International Society for Music Information Retrieval Conference: Across the bridge, Delft, The Netherlands, November 4-8, 2019
Zehren, Mickaël; Alunno, Marco; Bientinesi, Paolo
Analyzing and reducing the synthetic-to-real transfer gap in music information retrieval: the task of automatic drum transcription
Zehren, Mickaël; Alunno, Marco; Bientinesi, Paolo
Interpretability of methods for switch point detection in electronic dance music
Zehren, Mickaël; Alunno, Marco; Bientinesi, Paolo
View publications in DiVA
Research groups
Group member
High-Performance and Automatic Computing
Published: 06 Sep, 2024
From automated DJ mixing to AI in news media
+ Show more
- Show less