Envariabelanalys 2 7,5 hp
Om kursen
Moment 1 (6,5 hp): Matematisk teori för funktioner av en variabel
I momentet introduceras först teori för Riemannintegralen och dess grundläggande egenskaper. Integralen tolkas geometriskt som arean av ytan under en positiv funktionskurva. Integralkalkylens fundamentalsats och medelvärdessats behandlas och olika metoder för att evaluera integraler behandlas, särskilt variabelsubstitution och partiell integration. Begreppet generaliserad integral som ett gränsvärde av bestämd integral införs här.
Flera olika tillämpningar av integralbegreppet behandlas, som rotationsvolym, båglängd samt separabla och första ordningens linjära differentialekvationer. Begreppet parametrisk kurva definieras, och formeln för längden av parametriska kurvor ges som en generalisering av formeln för båglängd av funktionskurvor.
Som en andra huvuddel av momentet introduceras begreppet talföljd, och några centrala satser för talföljder behandlas. Med detta som grund definieras sedan begreppet konvergent serie. Nödvändiga och tillräckliga villkor för konvergens av serier utreds. Slutligen introduceras potensserier och begreppet Taylorserie. Några centrala satser i samband med detta behandlas, och tillämpas vid approximation av funktioner och bestämning av gränsvärden.
Moment 2 (1 hp): Datorlaborationer
I momentet behandlas numeriska approximationer med hjälp av datorstödda beräkningar.