Navigerat till

Matrisberäkningar och tillämpningar 7,5 hp

Om kursen

Kursen ger kunskap och förståelse om matrisberäkningar inom olika tillämpningsområden. För detta krävs fördjupade kunskaper om teori, metoder, algoritmer och programvara för olika klasser av problem inom numerisk linjär algebra. Bl.a. behandlas avbildningar, fundamentala underrum, transformationer, ortogonalitet och vinklar, rang, matrisfaktoriseringar (t.ex. LU, QR, SVD), konditionstal (illa resp. väl ställda problem), direkta och iterativa metoder för att lösa linjära ekvationssytem (t.ex. Gauss-Seidel, SOR, Krylov-underrumsmetoder, prekonditionering) och egenvärdesproblem (kanoniska former, metoder för att beräkna alla resp. ett få antal egenvärden och tillhörande egenvektorer). Vidare behandlar kursen hur dessa kunskaper används i ett antal tillämpningsområden inom t.ex. informationssökning på internet, datorgrafik, simulering, signalbehandling och ingenjörstillämpningar. Färdighetsträning och ökad förståelse förvärvas bl.a. genom datorlaborationer.

Kursen är uppdelat i två moduler:

Modul 1, teori, 4,5 hp
I denna modul introduceras teori, metoder och algoritmer.

Modul 2, praktik, 3,0 hp
I denna modul används och utvecklas numerisk programvara för att lösa problem i praktiska tillämpningar.

Anmäl dig

Frågor om utbildningen?

Tänk på att universitetet är en statlig myndighet och att det du skriver här kan bli en allmän handling. Var därför försiktig med att skriva känsliga eller personliga frågor här i kontaktformuläret. Alla uppgifter behandlas enligt dataskyddsförordningen (GDPR).

Tänk på att universitetet är en statlig myndighet och att det du skriver här kan bli en allmän handling. Var därför försiktig med att skriva känsliga eller personliga frågor här i kontaktformuläret. Alla uppgifter behandlas enligt dataskyddsförordningen (GDPR).

Nytt meddelande