"False"
Skip to content
umu.se
For students
For researchers
Library
For staff
Login
Students
Log into the student web
Edit
Edit content at umu.se
Svensk webbplats
Search
Menu
X close menu
Menu
Search
Search within:
Search within:
All
Education
Research
Staff
Student web
News
Main menu hidden.
Login
Students
Log into the student web
Edit
Edit content at umu.se
Svenska
Hoomaan Maskan
0000-0001-8251-2605
Contact
E-mail
hoomaan.maskan@umu.se
Phone
+46 90 786 55 52
Works as
Affiliation
Doctoral student
at
Department of Mathematics and Mathematical Statistics
Location
MIT-huset, plan 3, Matematik och matematisk statistik, MIT.B.365
Umeå universitet, 901 87 Umeå
Publications
Publications
Research
Research
2025
Randomized block coordinate DC algorithm
EURO Journal on Computational Optimization
, Elsevier 2025, Vol. 13
Maskan, Hoomaan; Halvachi, Paniz; Sra, Suvrit; et al.
2025
Revisiting Frank-Wolfe for structured nonconvex optimization
NeuriPS 2025: Downloads
Maskan, Hoomaan; Hou, Yikun; Sra, Suvrit; et al.
2025
A unified model for high-resolution ODEs: new insights on accelerated methods
Maskan, Hoomaan; Zygalakis, Konstantinos C.; Eftekhari, Armin; et al.
2023
Demixing sines and spikes using multiple measurement vectors
Signal Processing
, Elsevier 2023, Vol. 203
Maskan, Hoomaan; Daei, Sajad; Kahaei, Mohammad Hossein
2023
A variational perspective on high-resolution ODEs
Advances in Neural Information Processing Systems 36 (NeurIPS 2023)
Maskan, Hoomaan; Zygalakis, Konstantinos C.; Yurtsever, Alp
2022
Super-resolution DOA estimation for wideband signals using non-uniform linear arrays with no focusing matrix
IEEE Wireless Communications Letters
, IEEE 2022, Vol. 11, (3) : 641-644
Jirhandeh, Milad Javadzadeh; Maskan, Hoomaan; Kahaei, Mohammad Hossein
View publications in DiVA
Research groups
Group member
Mathematical Programming
Statistical Learning and Inference for Spatio-Temporal Data
Research projects
1 September 2019 until 31 August 2024
Compressive Sensing and Statistical Learning with Sparsity
+ Show more
- Show less