Navigated to

Deep Learning 7.5 credits

About the course

The course is about neural networks and gives an introduction to the field of deep learning. The content includes the components used to construct deep neural networks, e.g., activation functions, loss functions, regularization techniques (e.g., normalization and dropout), optimization methods (specifically variants of stochastic gradient descent), network architectures. Also covered is deep generative models. The students learn to apply their knowledge by implementing and training modern network architectures and deep learning methods on large data sets.

The course is split into two modules:

Theory, 5.5 credits
Laboration, 2.0 credits

Apply

Questions about the course?

Please be aware that the University is a public authority and that what you write here can be included in an official document. Therefore, be careful if you are writing about sensitive or personal matters in this contact form. If you have such an enquiry, please call us instead. All data will be treated in accordance with the General Data Protection Regulation.

Please be aware that the University is a public authority and that what you write here can be included in an official document. Therefore, be careful if you are writing about sensitive or personal matters in this contact form. If you have such an enquiry, please call us instead. All data will be treated in accordance with the General Data Protection Regulation.

New message