Spacecraft Technology and Design 7.5 credits
About the course
The course comprises two parts: a theoretical module of 1.5 credits and a practical module of 6 credits. The course starts with reviewing the basics of orbital mechanics (2-body problem, relative motion, conservation of energy and momentum, and Kepler's laws) and continues with an introduction to orbital mechanics for artificial satellites (e.g., sun synchronous, geostationary, and Molniya orbits). Advanced concepts in spacecraft orbit including transfer orbit, gravity assist, and aerobraking are explained, and real examples are shown and discussed. Main concepts of spacecraft attitude, i.e. the orientation in relation to a horizontal plane, (rotation, reference frame and inertial frame, local vertical and local horizontal, and transformation strategy) are explained and an introduction through different spacecraft systems and subsystems (mechanics and structure, electronics and power supply, telecommunication, thermal control, propulsion, data handling, attitude control, sensors and scientific payloads) are provided. Various launch vehicles and landing strategies are explained, and the theoretical module ends with an explanation of various environments that a spacecraft may face during its journey to a target as well as the environment at the target.
In parallel to the theoretical session, a practical training will be conducted to develop specific skills including electronics, programming, and structural design required for designing and building a mini-satellite (CanSat). The practical module starts with an introduction to logic circuits and digital systems and continues with an in-depth explanation on computer architecture, automated and semi-automated control systems, and hardware programming. A review to C++ and/or Python programming is given. Different parts of CanSat are introduced and different project work units are explained. The students are then divided into groups and each group is expected to design and build their own CanSat and ground station, which need to be tested and pass intensive reviews including preliminary design review (PDR) and critical design review (CDR). During the launch campaign, CanSats and ground stations will be tested under real conditions.
Apply
Contact us
Your message goes to Infocenter, and they’ll make sure it gets to the right person – so you get the best and most relevant reply.