Skip to content

Cookies

To use the chat, you need to allow Microsoft Dynamics to use cookies.

printicon
Main menu hidden.
Staff photo Linda Sandblad

Linda Sandblad

Project: Cell biology - Structure, assembly and cellular organization of the cytoskeleton

MIMS Team Leader

Director of Umeå Core Facility for Electron Microscopy

Works at

Affiliation
Research fellow at Department of Chemistry
Location
KBC-huset (KB), Linnaeus väg 10 Umeå universitet, 901 87 Umeå

The cytoskeletal elements are involved in cell morphogenesis, cellular organization, genome organization and cell division, growth and polarity control. Our research group use electron microscopy methods to study cytoskeleton structure, assembly and spatial organization in cells and bacteria.

Link to Umeå Core Facility for Electron Microscopy

Länk till MIMS

New group members are welcome! Postdoc fellowships are avalible for motivated candidates, please contact Linda Sandblad

FilP is an intermediate filament like cytoskeleton protein, which we study in the bacterial model organism Streptomyces coelicolor. Bacterial cytoskeletal structures and functions in different species are generally unexplored and may contain evolutionarily information, despite weak sequence homology. We use electron microscopy, tomography, molecular and structural biology to understand their spatial organization, cell and membrane interactions and assembly processes. FilP has striking structural similarities to higher eukaryotic lamins and forms repetitive filaments, networks or paracrystaline structures in vitro. Further knowledge in prokaryotic cell biology is the fundament to understand infection mechanisms, explore new therapies. Additionally, Sterptomyces is our main producer of antimicrobial substances. Through our studies of bacterial growth and life cycle we explore potential new antibiotics.

We study keratin filament assembly in an epidermal cell system and in vitro model. Keratins are intermediate filament proteins, responsible for cell elasticity and rigidity in all kind of epithelial tissue. In the skin, a proper keratin assembly is necessary for the barrier function, protecting the body from infections and dehydration. We have established an in vitro system for keratin purification and study keratin assembly by electron microscopy methods.

Microtubules make up the essential machinery for motion and spatial organization in all eukaryotic cells. Microtubule assembly, of tubulin alpha- and beta-tubulin protein dimers, is a dynamic process of continuous polymerization and disassembly tightly controlled by microtubule associated proteins (MAPs). We use a broad range of electron microscopy methods to study how MAPs affect microtubule dynamics and how they interact with other cytoskeleton systems and cellular membranes.

Macromolecules, American Chemical Society (ACS) 2021, Vol. 54, (7) : 3507-3516
Peterson, Anna; Mehandzhiyski, Aleksandar Y.; Svenningsson, Leo; et al.
Journal of Colloid and Interface Science, Elsevier 2021, Vol. 596 : 352-363
Freire, Rafael V.M.; Pillco-Valencia, Yeny; da Hora, Gabriel C.A.; et al.
Journal of Immunology, American Association of Immunologists 2021, Vol. 207, (6) : 1566-1577
Thofte, Oskar; Bettoni, Serena; Su, Yu-Ching; et al.
Frontiers in Microbiology, Frontiers Media S.A. 2021, Vol. 12
Paulsson, Magnus; Nørskov Kragh, Kasper; Su, Yu-Ching; et al.
Current opinion in structural biology, Elsevier 2020, Vol. 64 : 166-173
Söderholm, Niklas; Singh, Birendra; Uhlin, Bernt Eric; et al.
Life Science Alliance, Life Science Alliance 2019, Vol. 2, (3)
Javadi, Ala; Söderholm, Niklas; Olofsson, Annelie; et al.
Microscopy and Microanalysis, Cambridge University Press 2019, Vol. 25, (3) : 711-719
Zhang, Hanqing; Söderholm, Niklas; Sandblad, Linda; et al.
Molecular Microbiology, John Wiley & Sons 2019, Vol. 112, (1) : 184-198
Sen, Beer Chakra; Wasserstrom, Sebastian; Findlay, Kim; et al.
Scientific Reports, Nature Publishing Group 2018, Vol. 8
Söderholm, Niklas; Javadi, Ala; Sierra Flores, Isabel; et al.

Research groups

Head of research
Linda Sandblad