Engelskt namn: Statistics for Engineering Physicists
Denna kursplan gäller: 2018-08-13 och tillsvidare
Kurskod: 5MS068
Högskolepoäng: 6
Utbildningsnivå: Grundnivå
Huvudområden och successiv fördjupning:
Matematisk statistik: Grundnivå, har mindre än 60 hp kurs/er på grundnivå som förkunskapskrav
Matematik: Grundnivå, har mindre än 60 hp kurs/er på grundnivå som förkunskapskrav
Betygsskala: Med beröm godkänd, icke utan beröm godkänd, godkänd, väl godkänd, godkänd, underkänd
Ansvarig institution: Institutionen för matematik och matematisk statistik
Beslutad av: Teknisk-naturvetenskapliga fakultetsnämnden, 2019-03-11
Modul 1 (3 hp): Grundläggande sannolikhetsteori.
Begreppen sannolikhet, diskret och kontinuerlig slumpvariabel, sannolikhetsfunktion, täthetsfunktion, fördelningsfunktion, väntevärde, varians, standardavvikelse, kovarians och korrelation definieras. Vidare behandlas de i tekniska sammanhang vanligast förekommande standardfördelningarna med speciell tonvikt på normalfördelningen, fördelningar för linjärkombinationer av oberoende slumpvariabler med och utan normalfördelningsantagande (tillämpning av centrala gränsvärdessatsen).
Modul 2 (1,5 hp): Grundläggande statistikteori med speciell tonvikt på tekniska tillämpningar.
Begreppen punktskattning, väntevärdesriktighet, effektivitet, hypotes, signifikansnivå, styrka, typ I- och II-fel, förkastelseområde, p-värde och konfidensgrad definieras.
t-, Chi2- och F-fördelningarna tillämpas vid hypotesprövning och intervallskattning för ett och två stickprov. I modulen behandlas även teckentest, Wilcoxons rangsummetest samt enkel och multipel linjär regressionsanalys.
Slutligen ingår approximationer av väntevärden och varians för icke-linjära funktioner av slumpvariabler.
Modul 3: (1 hp): Datorlaborationer med statistisk programvara.
Modul 4: (0,5 hp): Muntlig presentation
Kunskap och förståelse
Färdighet och förmåga
Värderingsförmåga och förhållningssätt
För tillträde till kursen krävs 15 hp matematik inkluderande derivator och integraler eller motsvarande kunskaper.
Undervisningen bedrivs i huvudsak i form av föreläsningar, lektionsundervisning och laborationshandledning. För att öva färdigheten i att kommunicera statistiska resultat löser den studerande problem som presenteras muntligt och granskas av annan student.
Examinationen på modul 1 och modul 2 sker i form av skriftlig tentamen. Examinationen på modul 3 sker med muntlig och skriftlig redovisning av datorlaborationer. Examinationen på modul 4 sker med muntlig redovisning av utdelade statistiska problem. På modul 1 och 2 sätts något av omdömena Underkänd (U), Godkänd (3), Icke utan beröm godkänd (4) eller Med beröm godkänd (5). På modul 3 och 4 sätts endast något av omdömena Godkänd (G) eller Underkänd (U). På hela kursen ges något av betygen Godkänd (3), Icke utan beröm godkänd (4) eller Med beröm godkänd (5). Betyget bestäms av ett viktat medelvärde av andelen tentamenspoäng på modul 1 och 2, där dubbel vikt sätts till tentamenspoängen på modul 1. Betyget på hel kurs sätts först när alla examinerande delar är godkända.
Avsteg från kursplanens examinationsform kan göras för en student som har beslut om pedagogiskt stöd på grund av funktionsnedsättning. Individuell anpassning av examinationsformen ska övervägas utifrån studentens behov. Examinationsformen anpassas inom ramen för kursplanens förväntade studieresultat. Efter begäran av studenten ska kursansvarig lärare, i samråd med examinator, skyndsamt besluta om anpassad examinationsform. Beslutet ska sedan meddelas studenten.
Den som erhållit betyget godkänt på kursen kan ej examineras för högre betyg. För studerande som inte blivit godkänd vid ordinarie provtillfälle anordnas ytterligare provtillfälle. En student som utan godkänt resultat har genomgått två prov för en kurs eller en del av en kurs, har rätt att få en annan examinator utsedd, om inte särskilda skäl talar emot det (HF 6 kap. 22 §). Begäran om ny examinator ställs till prefekten vid Institutionen för matematik och matematisk statistik. Examination baserad på denna kursplan garanteras under två år efter studentens förstagångsregistrering på kursen.
Tillgodoräknande
Student har rätt att få prövat om tidigare utbildning eller motsvarande kunskaper och färdigheter förvärvade i yrkesverksamhet kan tillgodoräknas för motsvarande utbildning vid Umeå universitet. Ansökan om tillgodoräknande skickas in till Studentcentrum/Examina. Mer information om tillgodoräknande finns på Umeå universitets studentwebb, www.student.umu.se, och i högskoleförordningen (6 kap). Ett avslag på ansökan om tillgodoräknande kan överklagas (Högskoleförordningen 12 kap) till Överklagandenämnden för högskolan. Detta gäller såväl om hela som delar av ansökan om tillgodoräknande avslås.
I en examen får denna kurs ej ingå tillsammans med en annan kurs med likartat innehåll. Vid osäkerhet bör den studerande rådfråga studierektorn i matematik och matematisk statistik.
Kursen kan i examen räknas som kurs i matematik på grundläggande nivå.
Montgomery Douglas C.
Applied statistics and probability for engineers
7th ed.. EMEA ed. : Wiley : 2019 :
ISBN: 9781119585596
Obligatorisk
Se Umeå UB:s söktjänst
Stokastik : sannolikhetsteori och statistikteori med tillämpningar
Alm Sven Erick, Britton Tom
1. uppl. : Stockholm : Liber : 2008 : viii, 530 s.b ill., diagr., tab. :
http://www.liber.se/productimage/large/4705351o.jpg
ISBN: 978-91-47-05351-3 (inb.)
Obligatorisk
Se Umeå UB:s söktjänst