Navigated to

Genetics and evolution 15 credits

About the course

With a primary focus on eukaryotic organisms, this course deals with genetics at cellular and organismal levels, population genetics and microevolutionary processes. The genetics section deals with the structure and function of the DNA molecule and the flow of genetic information from genes to products, genome structure and organization, mitosis, meiosis and transmission genetics: inheritance of qualitative characters and linkage. The evolution section deals with population genetics: Hardy-Weinberg law, basic micro-evolutionary processes, quantitative genetics and speciation. Basic molecular evolution at whole genome level, and methods for studying genetic variation in natural populations are included in the course. The knowledge from theoretical aspects of the course will be consolidated and exemplified in problem solving exercises, group discussions and laboratory work. An individual investigative project will be carried out within a one of the subject areas covered in the course.
 
The course is divided into the following modules:

Module 1, Genetics, 5 hp
The Genetics section deals with the structure and replication of the genetic material (DNA, RNA, proteins, genetic code, replication, transcription, translation, chromosomes, mitosis / meiosis), control of gene expression, the creation of genetic variation (mutations), and the transfer of genetic information between generations (inheritance of qualitative and quantitative characters and linkage). Lessons learned from whole genome data, e.g. genome size and coding versus non-coding DNA, are also examined.

Module 2, Evolution, 7.5 hp
The Evolution section covers population genetics - genetic variation and Hardy-Weinberg's law as well as models for micro-evolutionary processes that alter allele and genotype frequencies over generations, within and between populations (mutation, migration, genetic drift, natural selection, mating systems, sexual selection). Speciation models are introduced to gain an understanding of the roles played by different evolutionary processes in facilitating reproductive isolation. Principles of macroevolution, and an overview on human evolution are presented. Methods and models used to detect and analyze the variation at genomic, genotypic and phenotypic levels, within and among individuals, populations and species are introduced.
 
Module 3, Individual investigative project, 2,5 hp
Students write an individual, in-depth essay on a topic related to those covered in the course. Topic choice must be approved by the course coordinator. The project requires finding, summarizing and synthesizing original research using papers from academic journals, source assessment, question formulation, formal scientific writing and proper citation of sources. Projects are presented in verbal and written forms. A critical assessment of a fellow student's project is also required.

Apply

Contact us

Your message goes to Infocenter, and they’ll make sure it gets to the right person – so you get the best and most relevant reply.

Please be aware that the University is a public authority and that what you write here can be included in an official document. Therefore, be careful if you are writing about sensitive or personal matters in this contact form. If you have such an enquiry, please call us instead. All data will be treated in accordance with the General Data Protection Regulation.

New message