Navigated to

Stochastic Differential Equations 7.5 credits

About the course

Module1 (6.5 hp): Theory.
The module starts with a review of the necessary prerequisites in probability theory, including an introduction to measure theory and stochastic processes . Thereafter (local) martingales and the quadratic variation are introduced with its most famous example being the Brownian motion.  The Ito integral and the Ito calculus are introduced.,  This is applied to solving certain stochastic differential equations (SDE) analytically . Furthermore, the existence- and uniqueness theory for SDE is treated in the Lipschitz case, which naturally leads to numerical methods for simulating solutions to SDEs. The connection between SDE and partial differential equations (PDE) is investigated (e.g.,  the Feynman-Kac equation), which gives the possibility to simulate solutions of PDEs in separate points by using simulations of SDEs.  Additionally, Girsanov's theorem and the martingale representation theorem are discussed, as well as a quick introduction to optimal stopping problems.

Module 2 (1 hp) Computer labs.
The module covers implementation of some numerical method for simulating solutions, fitting model parameters to given data, and the Least-Square-Monte-Carlo (LSMC) method for solving optimal stopping problems.

Apply

Questions about the course?

Please be aware that the University is a public authority and that what you write here can be included in an official document. Therefore, be careful if you are writing about sensitive or personal matters in this contact form. If you have such an enquiry, please call us instead. All data will be treated in accordance with the General Data Protection Regulation.

Please be aware that the University is a public authority and that what you write here can be included in an official document. Therefore, be careful if you are writing about sensitive or personal matters in this contact form. If you have such an enquiry, please call us instead. All data will be treated in accordance with the General Data Protection Regulation.

New message