"False"
Skip to content
printicon
Main menu hidden.

Image: Nicolò Maccaferri

Ultrafast Nanoscience

Research group In our group we study both the fundamental and applied aspects of light-matter interactions. In particular, we study light-driven charge, spin and lattice dynamics and strong optical nonlinearities in advanced multifunctional nano- and meta-materials for opto-electronics and information processing, photochemistry and biotechnology. We use frequency- and time-resolved (magneto-)optical spectroscopy, finite-element computational methods and bottom-up/top-down nanofabrication techniques.

Currently, we mainly focus on two research areas:

  • Ultrafast dynamics in nanophotonic materials: here, we focus on the generation and investigation of electronic excitations (e.g., plasmons, excitons and magnons) from the visible to the mid infrared with the aim to achieve nanoscale, energy-efficient and ultrafast control of several physical processes in metals, layered semiconductors and strongly correlated materials. For example, we target light-driven charge and spin dynamics, including exchange and spin-orbit interactions, plasmon-magnon polaritons hybridization and tailored phonon-driven phenomena. We also manipulate artificially the geometry (shape, size, composition) of conventional materials to optically induce and control phase transitions and critical phenomena, non-thermal and thermal charge and spin generation, injection, and manipulation for energy-efficient information processing and spintronics.
     
  • Multi-functional metamaterials for bio-nanophotonics: here, we aim to study the fundamental physical properties of nanostructured multi-functional metamaterials (e.g., harmonic generation and nonlinear optical phenemena, as well as optical control of chemical reactions), which combine different functions (e.g. optical, magnetic, and thermal), and their coupling with other materials, such as quantum emitters and molecules for light-driven opto-electronics and nanochemistry. We also design and characterize multi-functional nanostructures for enhanced single-molecule spectroscopy (e.g., DNA and protein sequencing/sensing), and develop novel approaches and methodologies for personalized medicine applications (e.g., localized hyperthermia and drug delivery).

Funding

Our research at Umeå University is currently funded by the Swedish Research Council (Starting Grant, 2022-2025), the European Innovation Council (Pathfinder Open project, 2022-2026), the European Research Council (ERC Starting Grant, 2024-2029), Kempestiftelserna and the Wenner-Gren Foundation. We acknowledge also the support from the Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows Programme. We are grateful to the Department of Physics and the Faculty of Science and Technology, Umeå University, which jointly co-funded the creation of our laboratory and the purchase of major equipment.

Head of research

Nicolò Maccaferri
Assistant professor
E-mail
Email

Overview

Participating departments and units at Umeå University

Department of Physics

Research area

Materials science, Physical sciences

External funding

Swedish Research Council, The Kempe Foundation, EU Horizon 2020 (H2020), Wenner-Gren Stiftelserna, ERC - European Research Council, Knut and Alice Wallenberg Foundation

External funding

Porträtt på Nicolò Maccaferri.
ERC grant to physics researcher for innovative data storage

Nicolò Maccaferri wants to create hard drives that work like 'time machines'.

Nicolò Maccaferri
Physics meets magic as Nicolò Maccaferri tames the light

His research lays the foundation for the light-operated and energy-efficient computers of the future.

Two Umeå researchers appointed Wallenberg Academy Fellows

Nicolò Maccaferri and André Mateus have been appointed Wallenberg Academy Fellows.

Latest update: 2024-04-17