"False"
Skip to content
printicon
Main menu hidden.

Climate impact on sources and sinks of greenhouse gases in high-latitude lakes

Research project The aim of the project is to assess climate impacts on C emission and burial in arctic–subarctic lakes.

Arctic and subarctic lakes play an important role in the global C cycle by burying C in sediments and emitting greenhouse gases as carbon dioxide and methane to the atmosphere. The relative magnitude of these different pathways has large implications for their role in the C cycle, i.e. to what extent they act as C sources or sinks. Still, the knowledge of C cycling in lakes is in many important aspects incomplete, preventing accurate quantification and predictions of their C source-sink function and response to climate change.

Contact person

Project overview

Project period:

2017-01-01 2021-12-31

Funding

Vetenskapsrådet (VR)

Participating departments and units at Umeå University

Arctic Centre at Umeå University, Department of Ecology and Environmental Science
  • Project members
    Cristian Gudasz
    Research fellow
    E-mail
    Email

    External project members

    David Bastviken, Linköping University
    Sally MacIntyre, University of California Santa Barbara, USA
    Oleg S. Pokrovsky, University of Toulouse, France
    Chris Soulsby, University of Aberdeen, UK

Project description

Arctic and subarctic lakes play an important role in the global C cycle by burying C in sediments and emitting greenhouse gases as carbon dioxide and methane to the atmosphere. The relative magnitude of these different pathways has large implications for their role in the C cycle, i.e. to what extent they act as C sources or sinks. Still, the knowledge of C cycling in lakes is in many important aspects incomplete, preventing accurate quantification and predictions of their C source-sink function and response to climate change. The aim of the project is to assess climate impacts on C emission and burial in arctic–subarctic lakes. We will specifically investigate direct impacts by temperature and precipitation, and indirect impacts via changes in terrestrial surroundings, and how these various drivers influence the C source-sink function of lakes depending on the rate and magnitude of change. An important part is to assess the various sources and pathways underpinning emission and burial in lakes. The core of the project is made up of (i) comparative studies of lakes across gradients in temperature and precipitation and (ii) large-scale experimental test of responses in C emission and burial to increases in temperature and precipitation/runoff.

Latest update: 2024-03-07