Hoppa direkt till innehållet
printicon
Huvudmenyn dold.
Kursplan:

Statistik C: Metoder för data science, 10 hp

Engelskt namn: Statistics C: Methods for Data Science

Denna kursplan gäller: 2020-09-28 och tillsvidare

Kurskod: 2ST060

Högskolepoäng: 10

Utbildningsnivå: Grundnivå

Huvudområden och successiv fördjupning: Statistik: Grundnivå, har minst 60 hp kurs/er på grundnivå som förkunskapskrav

Betygsskala: För denna kurs ges betygen VG Väl godkänd, G Godkänd, U Underkänd

Ansvarig institution: USBE Statistik

Beslutad av: Rektor för Handelshögskolan, 2020-09-10

Innehåll

Kursen består av två moment:

Moment 1: Metoder för data science (5 hp)
Moment 2: Tillämpningar inom data science (5 hp)

Moment 1

Momentet behandlar statistiska metoder för att lösa de speciella problem som uppkommer inom data science, med tonvikt på metoder för modellselektering vid och dimensionsreducering av stora och komplexa datamängder. Momentet behandlar "statistical learning", vars två huvudgrupper kallas "supervised learning" respektive "unsupervised learning". "Supervised learning" används då man har en responsvariabel som man vill bygga en statistisk modell för med hjälp av prediktorer, medan "unsupervised learning" används då man vill hitta samband och strukturer i en datamängd där ingen av variablerna är en responsvariabel.  I "supervised learning" ingår regressionsanalysmetoder, i vid bemärkelse, och metoder med syfte att prediktera kvalitativa responsvariabler, s k klassificeringsmetoder. Momentet inleds med en kort repetition av linjär regressionsanalys från kursen Statistik B: Programmering och modellering. Regressionsanalysen fördjupas och generaliseras bl a med metoder för icke-linjär och icke-parametrisk regression. Metoder för klassificering, t ex logistisk regression, diskriminantanalys och beslutsträd behandlas. Genomgående jämförs olika metoder med avseende på användbarhet och effektivitet i olika situationer. Under momentets senare del behandlas principalkomponentanalys och klusteranalys, som är metoder inom det som kallas "unsupervised learning". Programvaran R används genomgående.

Moment 2

Momentet består av obligatoriska inlämningsuppgifter och löper delvis parallellt med moment 1. Uppgifterna behandlar metoder som tas upp under moment 1. Programvaran R ska användas vid lösning av uppgifterna. Syftet är att praktiskt tillämpa den kunskap om "statistical learning" som inhämtats under moment 1.

Förväntade studieresultat

Efter att ha genomgått kursen förväntas studenten kunna:
  1. förklara innebörden i de viktigaste begreppen och resultaten inom "statistical learning",
  2. använda programvaran R för analys av stora och komplexa datamängder,
  3. för ett givet problem inom "supervised learning" välja lämplig metod, välja lämpliga prediktorer, samt tolka och utvärdera resultaten,
  4. tillämpa metoderna som tas upp i kursen inom "unsupervised learning",
  5. presentera resultat av dataanalyser av stora och komplexa datamängder.

Behörighetskrav

Univ: Statistik C: Inferensteori, 5 hp, eller motsvarande kunskaper.

Undervisningens upplägg

Undervisningen består av föreläsningar, lektioner och handledning. Dessa inslag kompletteras med videoföreläsningar och s.k. omvänt klassrum-upplägg (flipped classroom) på delar av kursen.

Undervisningen i vissa kursmoment/delar av moment kan komma att ges på engelska.

Examination

Kunskapskontrollen sker genom skriftlig individuell salstentamen av moment 1 samt genom skriftliga individuella inlämningsuppgifter av moment 2. På båda momenten ges omdömen Underkänd (U), Godkänd (G) eller Väl Godkänd (VG).

För de obligatoriska inlämningsuppgifterna fastställs vissa datum då redogörelse ska ges. Eventuella kompletteringar ska ske senast två veckor efter momentets slutdatum.

För att bli godkänd på hela kursen krävs att tentamen och samtliga obligatoriska uppgifter är godkända. Betyget utgör en sammanfattande bedömning av resultaten vid examinationens olika delar och sätts först när alla kursmoment är godkända. För betyget VG krävs VG på båda momenten.

Studerande som godkänts på ett prov får inte undergå förnyat prov för att uppnå ett högre betyg. För studerande som ej blivit godkänd erbjuds ytterligare provtillfällen enligt ett fastställt schema.

Efter två underkända prov på ett moment har studenten rätt att begära byte av examinator. Skriftlig begäran lämnas till studierektor senast två veckor före nästa examinationstillfälle.
   
Avsteg från kursplanens examinationsform kan göras för en student som har beslut om pedagogiskt stöd på grund av funktionsnedsättning. Individuell anpassning av examinationsformen ska övervägas utifrån studentens behov. Examinationsformen anpassas inom ramen för kursplanens förväntade studieresultat. Efter begäran av studenten ska kursansvarig lärare, i samråd med examinator, skyndsamt besluta om anpassad examinationsform. Beslutet ska sedan meddelas studenten.
I de fall en kursplan har upphört att gälla eller genomgått större förändringar garanteras studenterna minst tre provtillfällen (inklusive ordinarie provtillfälle) enligt tidigare kursplan under en tid av maximalt två år från det att tidigare kursplan upphört att gälla eller kursen slutat erbjudas.

Tillgodoräknande
Tillgodoräknande sker enligt Umeå universitets tillgodoräknandeordning.

Övriga föreskrifter

Undervisningen i vissa kursmoment/delar av moment kan komma att ges på engelska.

Litteratur

Giltig från: 2020 vecka 40

An Introduction to Statistical Learning : with Applications in R
James Gareth., Witten Daniela., Hastie Trevor., Tibshirani Robert.
New York, NY : Springer New York : 2013. : xiv, 426 p. 150 ill., 146 ill. in color. :
ISBN: 9781461471370
Obligatorisk
Se bibliotekskatalogen Album