Skip to content
printicon
Main menu hidden.

NanoLab

Research infrastructure NanoLab is an open-access infrastructure, providing facilities in nano materials characterization located at the Department of Physics.

We are an open-access infrastructure located at the Department of Physics, which means anyone can use our equipment after having an adequate training. NanoLab provides the possibility to:

  1. Produce thin layers (1 nm-500 nm) of metals or polymers on almost any kind of substrates.
  2. Structuring material surfaces by lithography or nano-imprinting.
  3. Modify and study material surface properties by plasma treatments and optical tensiometer.
  4. Investigate materials structure by X-ray analysis.

Besides, NanoLab is a classified Class 100 cleanroom that can be used for your own experiments.

NanoLab infrastructure description

The Nanolab was established in June 2012, and has since its inception been in continuous development. Today, it comprises a variety of advanced fabrication and characterization setups, including a mask aligner (Karl Süss Mask Aligner MJB3), a nanoimprinter (Obducat NIL 2.5), a thin-film deposition system (PVD75 thermal evaporator), X-ray diffractometer (PANalytical Xpert3 Powder), a contact angle meter, and a spin coater, as well as number of more standard pieces of equipment, such as vacuum ovens, hotplates, optical microscopes, UV-curing boxes, and analytical scales. A short overview on the available equipment are to be found in below:

NanoLab Poster

As NanoLab's environment is extremely clean (10 000 times less airborne particles than in a normal laboratory), it is possible to manufacture and study materials with notably high standard and precision. The facility is currently an invaluable tool for the University´s rapidly expanding research in the fields of microelectronics, optics and photonics, and nanotechnology, but it is also of obvious interest for scientists that are interested in, e.g., the fabrication and/or appropriate characterization of thin films, or materials that feature structures on the micrometer or sub-micrometer level. As such, its potential users encompass experimental researcher in essentially a wide variety of fields in natural science and medicine.

Organization and steering

The manager of NanoLab (Dr. Roushdey Salh) was recruited from Germany, and is formally hired at the Department of Physics.

The steering board

  • Ludvig Edman, Professor, Department of Physics
  • Thomas Wågberg, Professor, Department of Physics
  • Magnus Andersson, Associate professor, Department of Physics
  • Linda Sandblad, PhD, Department of  Molecular biology
  • Christoffer Boman, Associate professor, Department of Applied Physics and Electronics

Service, availability and booking

The equipment in NanoLab is made available to all scientists at Umeå University, as well as external institutions, for a fee of 300 SEK per hour. It is possible for high-volume users to apply for a discount. The NanoLab manager offers training sessions on each piece of equipment on an annual basis or on demand, and after approval following the training the user can independently use the equipment he or she has been trained on. Non-approved users can only use a piece of equipment under the supervision of the manager. Manuals and handbooks have been developed for each piece of equipment, and are available online or beside the equipment.

All of the equipment in NanoLab is available for booking during normal work days, and the booking system is available at:

www.phys.umu.se/cleanroombooking

Training and special courses concerning the equipment are offered annually often in November or December (exact date announced under KBC research courses), but also possible on demand.

Training request

Teaching activities

NanoLab is used for both undergraduate education (grundutbildning) and graduate teaching. Two advanced courses on the undergraduate level (Nano Science 7.5hp and Advanced Materials 7.5hp) currently use NanoLab as their laboratory facility in which the experiments are carried out. Two courses on the graduate level (Cleanroom technology 1.5 ECTS and Physical thin film deposition 1.5 ECTS) are also offered annually and are announced at the KBC website. These courses have primarily attracted participants from the Physics, Chemistry and Applied Physics department, but participants from the international business program and the department of Clinical Microbiology have also attended. Specific teaching and training sessions have also been offered on a regular basis to interested users. The courses are given in English, and the numbers of students are between 17 and 25 in each undergraduate course, and between 5 and 10 in each graduate course. For the coming years, courses are planned in Nano-imprinting and Material surface modification.

Equipment description and manuals

Atomic force microscope (Park NX-Hivac)

Park NX-Hivac enables material research that requires ​high accuracy and high resolution measurements in a vacuum environment. High vacuum ​measurement offers greater accuracy, better repeatability, and less tip and sample damage than ambient or dry N2 conditions.

Specification:

Vacuum chamber: 300 mm x 420 mm x 320 mm
Vacuum level: E10-5 torr
XYZ scanner: X-Y 100 μm x 100 μm and Z 15 μm
Optics: 10× Objective lens, 5M pixel CCD
Single sample size: 50 mm x 50 mm,
Multiple sample size: 10 mm x 10 mm, 4 pieces
Sample thickness: up to 20 mm

Applications:

  1. Surface imaging and topography

True Non-Contact mode, Contact mode, Tapping mode including phase imaging.

2. Nanomechanical properties

PinPoint™ Nanomechanical mode, Force Distance Spectroscopy, Force Volume imaging, Force Modulation Microscopy, Lateral Force Microscopy, Nanoindentation, Spring constant Calibration.

3. Electrical properties

Electrostatic Force Microscopy, Kelvin Probe Force Microscopy, Dynamic Contact EFM, Piezoelectric Force Microscopy, Piezoelectric Response Spectroscopy. Besides Conductive Probe AFM and PinPoint Conductive AFM.

4. Nanolithography

Achieved mechanically deforming the sample surface (scratch the sample surface with hard tips), or by changing of the surface's chemical properties (apply a bias between the tip and the surface). Objects can be drawn (bitmap images) in the software and printed onto the sample surface.

Atto Deiner Plasma Cleaner

is used for varieties of surface treatment, such as: cleaning, surface activation, etching. Samples can be up to 20 cm in diameter, two inlet gases are available (usually argon and oxygen).

User manual: Atto Deiner Plasma Cleaner

Official manual: Atto Deiner Plasma Cleaner

Karl Süss Mask Aligner MJB3

is used for UV photo lithography using 350 W mercury lamp and Suss diffraction-reducing exposure optics. The primary exposure wavelengths of 365 or 403 nm lead to about 5 μm minimum resolution.

User manual: Karl Süss Mask Aligner MJB3

Official manual: Karl Süss Mask Aligner MJB3

Kurt J. Lesker PVD75 Thermal Evaporator

is used for producing metallic or organic thin layers between 1-400 nm at high vacuum pressure 5x10-8 Torr. The system has 3 normal deposition sources and 1 low temperature organic deposition source. Samples can be up to 30 cm in diameter, substrate rotation and heating up to 350°C and two gas inlets are available.

User manual: Kurt J. Lesker PVD75 Thermal Evaporator

Official manual: Kurt J. Lesker PVD75 Thermal Evaporator

Kurt J. Lesker PVD75 Deposition Data

Obducat NIL 2.5 Nanoimprinter

is used to stamp a pattern into a polymer coating on a substrate at max heating 250ºC and max pressure 70 bar. A stamp made of nickel or silicon. The substrate is heated and the stamp is pressed into the polymer. The resolution is up to 1 nm depending on the stamp.

Official manual: Obducat NIL 2.5 Nanoimprinter

Olympus BX51 Optical Microscope

provides high contrast, high magnification, optimal color fidelity, Imaging in different modes and with different magnifications.

Official manual: Olympus BX51 Optical Microscope

PANalytical Xpert3 Powder XRD

X-ray source : Cu Kα, λ=1.5418 Å.
Operating range : 10 - 70 o2θ,
small-angle X-ray scattering possible too.
Temperature : Room temperature, but temperature
chamber available for lower and higher temperatures.
Humidity : Ambient, but humidity chamber available
for different humidities.
Sample amount : App. 10 mg

Official manual: PANalytical Xpert3 Powder XRD

SPIN150-NPP Spin Coater

is used for producing thin layers from dissolved materials (liquids) at room temperature. Layer thicknesses (nm-μm range) controlled by the rotation speed between 1-10000 rpm.

Official manual: SPIN150-NPP Spin Coater

Theta OneAttension Contact Angle Meter

is used for highly accurate measurements of static and dynamic contact angle, measure surface free energy, surface and interfacial tension.

User manual: Theta OneAttension Contact Angle Meter

Official manual: Theta OneAttension Contact Angle Meter

Four-Point Probe system

It is used to characterize thin layers electrical property of conducting and semiconducting materials. It is capable of delivering currents between 10 nA and 150 mA, and can measure voltages from as low as 100 μV up to 10 V. The system can measure sheet resistances in the range of 100 mΩ/square to 10 MΩ/square, enabling the characterization of a wide range of materials. If the sample thickness was provided, then the average resistivity and conductivity will also be displayed.

User manual: Four-Point Probe system

Official manual: Four-Point Probe system 

Contact

Roushdey Salh
Senior research engineer
E-mail
Email